Geowissenschaften
Refine
Year of publication
Document Type
- Article (550)
- Doctoral Thesis (134)
- Book (25)
- Working Paper (19)
- Contribution to a Periodical (17)
- Conference Proceeding (16)
- diplomthesis (15)
- Part of Periodical (10)
- Report (5)
- Part of a Book (4)
Is part of the Bibliography
- no (809)
Keywords
- climate change (12)
- Klimaänderung (5)
- Atmospheric chemistry (4)
- Boden (4)
- Climate change (4)
- Deutschland (4)
- Geochemistry (4)
- Klima (4)
- Modellierung (4)
- Stratosphäre (4)
Institute
- Geowissenschaften (809)
- Senckenbergische Naturforschende Gesellschaft (50)
- Präsidium (45)
- Biodiversität und Klima Forschungszentrum (BiK-F) (43)
- Geographie (26)
- Biowissenschaften (15)
- Physik (7)
- Informatik (5)
- Medizin (5)
- Biochemie und Chemie (4)
By means of available ice nucleating particle (INP) parameterization schemes we compute profiles of dust INP number concentration utilizing Polly-XT and CALIPSO lidar observations during the INUIT-BACCHUS-ACTRIS 2016 campaign. The polarization-lidar photometer networking (POLIPHON) method is used to separate dust and non-dust aerosol backscatter, extinction, mass concentration, particle number concentration (for particles with radius > 250 nm) and surface area concentration. The INP final products are compared with aerosol samples collected from unmanned aircraft systems (UAS) and analyzed using the ice nucleus counter FRIDGE.
Two types of particles exist in the atmosphere, primary and secondary particles. While primary particles such as soot, mineral dust, sea salt particles or pollen are introduced directly as particles into the atmosphere, secondary particles are formed in the atmosphere by condensation of gases. The formation of such new aerosol particles takes place frequently and at a broad variety of atmospheric conditions and geographic locations. A considerable fraction of the atmospheric particles is formed by such nucleation processes. The newly formed particles may grow by condensation to sizes where they are large enough to act as cloud condensation nuclei and therefore may affect cloud properties. The fundamental processes of aerosol nucleation are described and typical atmospheric observations are discussed. Two recent studies are introduced that potentially change our current understanding of atmospheric nucleation substantially.
Central and western Europe were affected by a compressional tectonic event in the Late Cretaceous, caused by the convergence of Iberia and Europe. Basement uplifts, inverted graben structures, and newly formed marginal troughs are the main expressions of crustal shortening. Although the maximum activity occurred during a short period of time between 90 and 75 Ma, the exact timing of this event is still unclear. Dating of the start and end of Late Cretaceous basin inversion gives very different results depending on the method applied. On the basis of borehole data, facies, and thickness maps, the timing of basin reorganization was reconstructed for several basins in central Europe. The obtained data point to a synchronous start of basin inversion at 95 Ma (Cenomanian), 5 Myr earlier than commonly assumed. The end of the Late Cretaceous compressional event is difficult to pinpoint in central Europe, because regional uplift and salt migration disturb the signal of shifting marginal troughs. Late Campanian to Paleogene strata deposited unconformably on inverted structures indicate slowly declining uplift rates during the latest Cretaceous. The differentiation of separate Paleogene inversion phases in central Europe does not appear possible at present.
We combined biostratigraphical analyses, archaeological surveys, and Glacial Isostatic Adjustment (GIA) models to provide new insights into the relative sea-level evolution in the northeastern Aegean Sea (eastern Mediterranean). In this area, characterized by a very complex tectonic pattern, we produced a new typology of sea-level index point, based on the foraminiferal associations found in transgressive marine facies. Our results agree with the sea-level history previously produced in this region, therefore confirming the validity of this new type of index point. The expanded dataset presented in this paper further demonstrates a continuous Holocene RSL rise in this portion of the Aegean Sea. Comparing the new RSL record with the available geophysical predictions of sea-level evolution indicates that the crustal subsidence of the Samothraki Plateau and the North Aegean Trough played a major role in controlling millennial-scale sea-level evolution in the area. This major subsidence rate needs to be taken into account in the preparation of local future scenarios of sea-level rise in the coming decades.
[Nachruf] Arno Semmel
(2010)
In partially molten regions inside the Earth, melt buoyancy may trigger upwelling of both solid and fluid phases, i.e., diapirism. If the melt is allowed to move separately with respect to the matrix, melt perturbations may evolve into solitary porosity waves. While diapirs may form on a wide range of scales, porosity waves are restricted to sizes of a few times the compaction length. Thus, the size of a partially molten perturbation in terms of compaction length controls whether material is dominantly transported by porosity waves or by diapirism. We study the transition from diapiric rise to solitary porosity waves by solving the two-phase flow equations of conservation of mass and momentum in 2D with porosity-dependent matrix viscosity. We systematically vary the initial size of a porosity perturbation from 1.8 to 120 times the compaction length. If the perturbation is of the order of a few compaction lengths, a single solitary wave will emerge, either with a positive or negative vertical matrix flux. If melt is not allowed to move separately to the matrix a diapir will emerge. In between these end members we observe a regime where the partially molten perturbation will split up into numerous solitary waves, whose phase velocity is so low compared to the Stokes velocity that the whole swarm of waves will ascend jointly as a diapir, just slowly elongating due to a higher amplitude main solitary wave. Only if the melt is not allowed to move separately to the matrix will no solitary waves build up, but as soon as two-phase flow is enabled solitary waves will eventually emerge. The required time to build them up increases nonlinearly with the perturbation radius in terms of compaction length and might be too long to allow for them in nature in many cases.