Institutes
Refine
Year of publication
Document Type
- Article (94)
- Doctoral Thesis (38)
- Book (16)
- Working Paper (8)
- Contribution to a Periodical (2)
- Review (2)
- Report (1)
Language
- English (120)
- German (40)
- Multiple languages (1)
Has Fulltext
- yes (161)
Is part of the Bibliography
- no (161)
Keywords
- Frankfurt am Main (5)
- Carbonate (3)
- precipitation (3)
- Baltic age spectra (2)
- COSMO-CLM (2)
- Detrital zircons (2)
- Devonian (2)
- Holy Cross Mountains (2)
- Microbialite (2)
- Mid-German Crystalline Zone (2)
Institute
- Geowissenschaften / Geographie (161)
- Präsidium (18)
- Biochemie, Chemie und Pharmazie (3)
- Biowissenschaften (3)
- Biodiversität und Klima Forschungszentrum (BiK-F) (2)
- Gesellschaftswissenschaften (2)
- Psychologie und Sportwissenschaften (2)
- Senckenbergische Naturforschende Gesellschaft (2)
- Evangelische Theologie (1)
- Institut für sozial-ökologische Forschung (ISOE) (1)
Titanite is a potentially powerful U–Pb petrochronometer that may record metamorphism, metasomatism, and deformation. Titanite may also incorporate significant inherited Pb, which may lead to inaccurate and geologically ambiguous U–Pb dates if a proper correction is not or cannot be applied. Here, we present laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)-derived titanite U–Pb dates and trace element concentrations for two banded calcsilicate gneisses from south-central Maine, USA (SSP18-1A and SSP18-1B). Single spot common Pb-corrected dates range from 400 to 280 Ma with ±12–20 Ma propagated 2SE. Titanite grains in sample SSP18-1B exhibit regular core-to-rim variations in texture, composition, and date. We identify four titanite populations: (1) 397 ± 5 Ma (95% CL) low Y + HREE cores and mottled grains, (2) 370 ± 7 Ma high Y + REE mantles and cores, (3) 342 ± 6 Ma cores with high Y + REE and no Eu anomaly, and (4) 295 ± 6 Ma LREE-depleted rims. We interpret the increase in titanite Y + HREE between ca. 397 and ca. 370 Ma to constrain the timing of diopside fracturing and recrystallization and amphibole breakdown. Apparent Zr-in-titanite temperatures (803 ± 36°C at 0.5 ± 0.2 GPa) and increased XDi suggest a thermal maximum at ca. 370 Ma. Population 3 domains dated to ca. 342 Ma exhibit no Eu anomaly and are observed only in compositional bands dominated by diopside (>80 vol%), suggesting limited equilibrium between titanite and plagioclase. Finally, low LREE and high U/Th in Population 4 titanite dates the formation of hydrous phases, such as allanite, during high XH2O fluid infiltration at ca. 295 Ma. In contrast to the well-defined date–composition–texture relationships observed for titanite from SSP18-1B, titanite grains from sample SSP18-1A exhibit complex zoning patterns and little correlation between texture, composition, and date. We hypothesize that the incorporation of variable amounts of radiogenic Pb from dissolved titanite into recrystallized domains resulted in mixed dates spanning 380–330 Ma. Although titanite may reliably record multiple phases of metamorphism, these data highlight the importance of considering U–Pb data along with chemical and textural data to screen for inherited radiogenic Pb.
Reliable identification of chondrules, calcium-aluminum-rich inclusions (CAIs), carbonate grains, and Ca-phosphate grains at depth within untouched, unprepared chondritic samples by a nondestructive analytical method, such as synchrotron X-ray fluorescence (SXRF) computed tomography (CT), is an essential first step before intrusive analytical and sample preparation methods are performed. The detection of a local Ca-enrichment could indicate the presence of such a component, all of which contain Ca as major element and/or Ca-bearing minerals, allowing it to be precisely located at depth within a sample. However, the depth limitation from which Ca-K fluorescence can travel through a chondrite sample (e.g., ∼115 µm through material of 1.5 g cm−3) to XRF detectors leaves many Ca-bearing components undetected at deeper depths. In comparison, Sr-K lines travel much greater distances (∼1700 µm) through the same sample density and are, thus, detected from much greater depths. Here, we demonstrate a clear, positive, and preferential correlation between Ca and Sr and conclude that Sr-detection can be used as proxy for the presence of Ca (and, thus, Ca-bearing components) throughout mm-sized samples of carbonaceous chondritic material. This has valuable implications, especially for sample return missions from carbonaceous C-type asteroids, such as Ryugu or Bennu. Reliable localization, identification, and targeted analysis by SXRF of Ca-bearing chondrules, CAIs, and carbonates at depth within untouched, unprepared samples in the initial stages of a multianalysis investigation insures the valuable information they hold of pre- and post-accretion processes in the early solar system is neither corrupted nor destroyed in subsequent processing and analyses.
Questions: Both species turnover and intraspecific trait variation can affect plant assemblage dynamics along environmental gradients. Here, we asked how community assemblage patterns in relation to species turnover and intraspecific variation differ between endemic and non-endemic species. We hypothesized that endemic species show lower intraspecific variation than non-endemic species because they tend to have high rates of in situ speciation, whereas non-endemic species are expected to have a larger gene pool and higher phenotypic plasticity.
Location: La Palma, Canary Islands.
Methods: We established 44 sampling sites along a directional gradient of precipitation, heat load, soil nitrogen, phosphorus and pH. Along this gradient, we estimated species abundances and measured three traits (plant height, leaf area and leaf thickness) on perennial endemic and non-endemic plant species. In total, we recorded traits for 1,223 plant individuals of 43 species. Subsequently, we calculated community-weighted mean traits to measure the relative contribution of species turnover, intraspecific variation and their covariation along the analysed gradient.
Results: The contribution of intraspecific variation to total variation was similar in endemic and non-endemic assemblages. For plant height, intraspecific variation explained roughly as much variation as species turnover. For leaf area and leaf thickness, intraspecific variation explained almost no variation. Species turnover effects mainly drove trait responses along the environmental gradient, but intraspecific variation was important for responses in leaf area to precipitation.
Conclusions: Despite their distinct evolutionary history, endemic and non-endemic plant assemblages show similar patterns in species turnover and intraspecific variation. Our results indicate that species turnover is the main component of trait variation in the underlying study system. However, intraspecific variation can increase individual species’ fitness in response to precipitation. Overall, our study challenges the theory that intraspecific trait variation is more important for the establishment of non-endemic species compared with endemic species.
Positive plant–plant interactions are thought to drive vegetation patterns in harsh environments, such as semi-arid areas. According to the stress-gradient hypothesis (SGH), the role of positive interactions between species (facilitation) is expected to increase with harshness, predicting associated variation in species composition along environmental gradients. However, the relation between stress and facilitation along environmental gradients is debated. Furthermore, differentiating facilitative interactions from other underlying mechanisms, such as microtopographic heterogeneity, is not trivial. We analysed the spatial co-occurrence relationships of vascular plant species that form patchy vegetation in arid lapilli fields (tephra) from recent volcanic eruptions on La Palma, Canary Islands. Assuming a harshness gradient negatively correlated with elevation because the lower elevations are more arid and water availability is considered the most limiting resource, and that an outcome of facilitation is plants co-occurring in the same patch, from the SGH we expected a greater degree of co-occurrence at lower elevation. We tested this at both the species and the individual plant level. We analysed the species composition of 1277 shrubby vegetation patches at 64 different sampling points, ranging from the coast to around 700 m a.s.l. Patch morphology and microtopographic heterogeneity variables were also measured, to account for their potential effects on the species composition of patches. We used generalized linear models and generalized mixed-effects models to analyse species richness, number of individuals in patches and percentage of patches with positive co-occurrences, and a pairwise co-occurrence analysis combined with a graphical network analysis to reveal positive links between 13 of the species. We found that the percentage of patches with positive co-occurrences increased at higher elevations, in contrast to the predictions of the SGH, but in accordance with a refined stress-gradient hypothesis for arid sites, in which characteristics of the interacting species are incorporated.
This thesis presents the experimental and numerical analysis of seismic waves that are produced by wind farms. With the aim to develop renewable energies rapidly, the number of wind turbines has been increased in recent years. Ground motions induced by their operation can be observed by seismometers several kilometers away. Hence, the seismic noise level can be significantly increased at the seismic station. Therefore, this study combines long-term experiments and numerical simulations to improve the understanding of the seismic wavefields emitted by complete wind farms and to advance the prediction of signal amplitudes.
Firstly, wind-turbine induced signals that are measured at a small wind farm close to Würzburg (Germany) are correlated with the operational data of the turbines. The frequency-dependent decay of signal amplitudes with distance from the wind farm is modeled using an analytical method including the complex effects of interferences of the wavefields produced by the multiple wind turbines. Specific interference patterns significantly affect the wave propagation and therefore the signal amplitude in the far field of a wind farm. Since measurements inside the wind turbines show that the assumption of in-phase vibrating wind turbines is inappropriate, an approach to calculate representative seismic radiation patterns from multiple wind turbines, which allows the prediction of amplitudes in the far field of a complete wind farm, is proposed.
In a second study, signals with a frequency of 1.15 Hz, produced by the Weilrod wind farm (north of Frankfurt, Germany) are observed at the seismological observatory TNS (Taunus), which is located at a distance of 11 km from the wind farm. The propagation of the wavefield emitted by the wind farm is numerically modeled in 3D, using the spectral element method. It is shown that topographic effects can cause local signal amplitude reductions, but also signal amplification along the travel path of the seismic wave. The comparison of simulations with and without topography reveals that the reduction and amplification are spatially linked to the shape of the topography, which could be an explanation for the relatively high signal amplitude observed at TNS.
Finally, the reduction of the impact of wind turbines on seismic measurements using borehole installations is studied using 2D numerical models. Possible effects of the seismic velocity, attenuation, and layering of the subsurface are demonstrated. Results show that a borehole can be very effective in reducing the observed high-frequency signals emitted by wind turbines. However, a borehole might not be beneficial if signals with frequencies of about 1 Hz (or lower) are of interest, due significant wavelength-dependent effects. The estimations of depth-dependent amplitudes with a layered subsurface are validated with existing data from wind-turbine-induced signals measured at the top and bottom of two boreholes.
The experimental analysis of measurements conducted at wind farms and the advances of modeling such signals improve the understanding of the propagation of wind-farm induced seismic wave fields. Furthermore, the methods developed in this work have a high potential of universal application to the prediction of signal amplitudes at seismometers close to wind farms with arbitrary layout and geographic location.
This thesis is focusing on the impact of Paratethys and Mediterranean water bodies over the Eurasian climate and the interplay between climate, tectonics and biosphere during the late Miocene. This target was the interval between 12.7 and 7.65 Ma for Paratethys, following the Eastern Paratethys restriction and isolation, and 7.2−6.5 Ma (the early Messinian) in Mediterranean, zooming on the effects of gateway restrictions over the eastern Mediterranean and the new born Aegean domain. In both cases restriction is overlapping with large scale climatic changes and tectonic reconfiguration, leading a sort of symbiotic relationship.
Paratethys was a giant epicontinental sea that covered a large part of Eurasia since Paleogene. Due to the Eurasia-Afro-Arabia collision and formation of the Alpine-Himalayan belt (Rögl, 1999; Popov et al., 2006), the Paratethys was divided during the late Miocene in smaller basins that in time were isolated of each other. The protracted isolation and intense continentalisation of paratethyan realm led to changes in humidity distribution, basin connectivity, sediment sources and salinity. These changes had in turn major consequences over water circulation, water availability, vegetation cover and biota. These changes are more intense after 11.6 Ma, when the Eastern Paratethys lost any sustained marine connection, evolving into an enclosed system with endemic fauna (Harzhauser and Piller, 2007).
Mediterranean Sea is a Mezozoic oceanic relic squeezed between Africa, Europe, Anatolia and Arabia, as Africa continued to subduct beneath the European plate. As opposed to Paratethys, it maintained the open connection with the ocean until Messinian, when the two Atlantic gateways (Betic and Rifian corridors) closed for a short time, isolating the basin. The cut off resulted in a dramatic drop down and onset of evaporitic precipitation in marginal basins, the event receiving the name of Messinian Salinity Crisis (5.97−5.55). The restriction affected all marine ecosystems, due to changes in salinity and stratification of water column.
The main objectives of this thesis were:
(1) build valid paleo-temperatures records for both basins based on biomarkers;
(2) reconstruct the hydrology for the late Miocene time interval;
(3) identify vegetation composition and changes;
(4) identify paleo-fires in the late Miocene sediment records;
(5) identify the biotic response to the overall climate and tectonic changes.
All the above objectives were attained with results published in specific journals (Chapters 5−7).
Based on Panagia section (Taman Peninsula, Russia) the longest Paratethys temperature record was completed (~5 Myr), covering the interval between 12.7 and 7.65 Ma. A comprehensive SST and MAT records was obtained, as well as soil pH and carbon (δ13C) and hydrogen (δ2H) stable isotopic compositions on n-alkanes and alkenones. The main findings are concentrated around three prolonged periods with severe droughts affecting the late Miocene circum-Paratethys region peaking at 9.65, 9.4 and 7.9 Ma, associated with a transition towards open land vegetation, intensification of fire activity and enhanced evaporation and aridity.
The time intervals with dryer conditions recorded in Panagia coincide with periods of mammal turnover and dispersal in Eurasia indicating that major environmental changes occurred in the circum-Paratethys region and Paratethys fragmentation had a great impact on the terrestrial ecosystems, when periods of prolonged droughts generated biotic crises and animal displacements across the Eurasian continent. The δ13CC29n-alkane values and charcoal morphologies from Panagia indicate an increased contribution of C4 plants adapted to drier conditions at 9.66 Ma. Similarly high δ13CC29n-alkane values continue until 9.4 Ma, when in Western Europe increased seasonality accelerated the demise of the evergreen subtropical woodlands and expansion of grasslands from Anatolia and Middle East to Europe.
As a result of basin fragmentation and climatic stress, the Eastern Paratethys sub-basins progressively lost their marine properties and turned into brackish-fresh water bodies fed primarily by riverine input. The shallower areas became in time emerged, obstructing connections and isolating the biota, inducing rapid adjusting or extinctions. Thus, the Paratethys harbored a highly endemic fauna (Rögl, 1999), such as dwarf whales, dolphins, seals (among mammals), as well as fish and other taxa (mollusks, ostracods, diatoms, foraminifera, algae, etc.).
Collectively the data structured and analyzed in chapter five support a model in which the Eastern Paratethys evolved as a largely (en)closed system, registering paleoenvironmental signals that are governed by interbasinal connectivity (or lack of it) and regional climate changes in the basin catchment. Acting as an important source of humidity for Western and Central Asia, the size and areal extent of the Paratethys water body is likely to have had a major impact on hydroclimate patterns in the Eurasian interior, with the cumulative fluctuations in both hydrology and surface temperature enhancing the aridity and seasonality, with different partition of moisture over the year. Our combined data suggests a decoupling of Paratethys from the global system as isolation advanced, dominated by regional tectonics and ultimately the Paratethys volume and areal extent reduction.
Ob Klimawandel oder Luftverschmutzung: Die chemischen und physikalischen Prozesse in der Atmosphäre haben wichtige Auswirkungen auf die menschliche Gesundheit und Ökosysteme. Dabei ist die Atmosphäre mehr als ein Gemisch aus Stickstoff, Sauerstoff, Wasserdampf, Helium und Kohlenstoffdioxid. Es gibt zahlreiche Spurengase, deren Gesamtanteil am Volumen weniger als 1 % ausmacht. In dieser Arbeit werden Stickstoffoxide, Schwefeldioxid, Kohlenstoffmonoxid und Schwefelsäure näher betrachtet, die im Rahmen der flugzeugbasierten Messkampagne Chemistry of the Atmosphere: field experiment in Europe (CAFE-EU)/BLUESKY gemessen wurden.
Die Stickstoffoxide NO und NO2, als NOx zusammengefasst, besitzen hauptsächlich anthropogene Quellen, allen voran fossile Verbrennung und industrielle Prozesse. Zwischen NO und NO2 besteht ein photochemisches Gleichgewicht, sodass in der Atmosphäre vor allem NO2 in relevanten Konzentrationen vorkommt; dies wirkt aufgrund der Bildung von Salpetersäure, HNO3, in wässriger Lösung beim Einatmen ätzend und ist entsprechend gesundheitsschädlich. Troposphärisches Ozon, O3, wesentlicher Bestandteil von Sommersmog, wird hauptsächlich durch die Reaktion von NO mit Peroxiden (HO2 und RO2) gebildet. In der Stratosphäre entstehen NOx hauptsächlich durch die Photodissoziation von Lachgas, N2O, das aufgrund seiner langen Lebenszeit von der Tropo- in die Stratosphäre transportiert werden kann und dort die wichtigste Stickstoffquelle darstellt. In der Stratosphäre tragen NOx zum katalytischen Abbaumechanismus des Ozons bei (Bliefert, 2002; Seinfeld and Pandis, 2016).
Schwefeldioxid, SO2, ist ein toxisches Gas, dessen atmosphärische Quellen hauptsächlich anthropogen sind, nämlich fossile Verbrennung und industrielle Prozesse; Senken sind trockene und feuchte Deposition, wobei letztere zu saurem Regen führen kann. Seit den 1980ern sinken die globalen SO2-Emissionen. SO2 kann in der Atmosphäre zu Sulfat und Schwefelsäure oxidiert werden, was Hauptbestandteil des Wintersmogs ist. Der wichtigste Mechanismus ist die Oxidation mit dem Hydroxylradikal, OH˙, unter Beteiligung von Wasserdampf. In der Stratosphäre ist Carbonylsulfid, OCS, die wichtigste Schwefelquelle, da es analog zum N2O dank seiner langen Lebenszeit von der Tropo- in die Stratosphäre transportiert werden kann (Bliefert, 2002; Seinfeld und Pandis, 2016). Typische Konzentrationen von Schwefelsäure sind 105 cm–3 nachts und 107 cm–3 tagsüber in der Troposphäre sowie 105 cm–3 tagsüber in der Stratosphäre (Clarke et al., 1999; Weber et al., 1999; Fiedler et al., 2005; Arnold, 2008; Kürten et al., 2016; Berresheim et al., 2000).
Kohlenstoffmonoxid, CO, ist ein toxisches Gas, das zu gleichen Teilen durch direkte Emissionen (v.a. Biomasseverbrennung und fossile Verbrennung) und In-situ-Oxidation (v.a. von Methan, Isopren und industriellen Kohlenwasserstoffen) in die Atmosphäre gelangt. Die Hauptsenke ist die Reaktion mit OH˙ in der Troposphäre. Seit 2000 sinkt die globale CO-Konzentration (Bliefert, 2002).
Doch neben Gasen sind auch Aerosolpartikel fester Bestandteil des Gemisches Luft, welche luftgetragene feste oder flüssige Teilchen sind. Primäre Aerosolpartikel werden direkt als solche in die Atmosphäre emittiert, während sekundäre Aerosolpartikel in der Atmosphäre gebildet werden, indem gasförmige Vorläufersubstanzen mit geringer Flüchtigkeit auf primären Partikeln kondensieren oder durch Zusammenclustern und Anwachsen komplett neue Partikel bilden. Aerosolpartikel ermöglichen als Wolkenkondensationskeime erst die Bildung von Wolken und wirken somit – neben ihrem direkten reflektierenden Effekt – durch Änderung der Wolkenbedeckung und -eigenschaften insgesamt kühlend aufs Klima und beeinflussen die lokalen und globalen Wasserkreisläufe. Doch sie haben auch negative Auswirkungen auf die menschliche Gesundheit und sind für eine Verkürzung der durchschnittlichen Lebensdauer in Regionen mit hohen Feinstaubbelastungen verantwortlich (Seinfeld und Pandis, 2016; Bellouin et al., 2020; World Health Organization, 2016).
Neben den bisher betrachteten neutralen, also ungeladenen Gasen und Partikeln sind Ionen in der Gasphase sowie geladene Partikel ebenfalls Bestandteil der Atmosphäre. Sie spielen bei vielen atmosphärischen Prozessen eine wichtige Rolle, wie etwa bei Gewittern, Radiowellenübertragung und ionen-induzierter Nukleation von Aerosolpartikeln. Die Hauptquellen für Ionisation in der Tropo- und Stratosphäre ist die galaktische kosmische Strahlung, die entgegen ihrem Namen hauptsächlich aus Protonen und α-Partikeln (primäre Partikel genannt) besteht und in der Erdatmosphäre durch Kollision mit Luftmolekülen Teilchenschauer von sekundären Partikeln (u.a. Myonen, Pionen und Neutrinos) hervorruft. Die primären und sekundären Partikel können die Luftmoleküle ionisieren unter Entstehung von N+, N2+, O+, O2+ und Elektronen. Sauerstoff reagiert rasch mit letzteren zu O– und O2–. Diese Kationen und Anionen reagieren weiter, bis Ionenclustern der Summenformeln (HNO3)n(H2O)mNO3– und H+(H2O)n(B)m gebildet werden, wobei B Basen wie Methanol, Aceton, Ammoniak oder Pyridin sind. Weitere Ionisationsquellen sind der Zerfall des Radioisotops 222Rn in Bodennähe und ionisierende Solarstrahlung oberhalb der Stratosphäre. Atmosphärische Ionen haben zwei wichtige Senken: die Wiedervereinigung, auch Rekombination genannt, bei der sich ein Kation und ein Anion gegenseitig neutralisieren sowie das Anhaften an Aerosolpartikeln. Letztere Senke ist vor allem in der Troposphäre aufgrund der relativ hohen Konzentration an Aerosolpartikeln relevant (Arnold, 2008; Viggiano und Arnold, 1995; Bazilevskaya et al., 2008; Hirsikko et al., 2011).