Geowissenschaften / Geographie
Refine
Has Fulltext
- yes (77)
Is part of the Bibliography
- no (77)
Keywords
- COSMO-CLM (2)
- Palaeoceanography (2)
- Palaeoclimate (2)
- climate change (2)
- precipitation (2)
- uncertainty (2)
- (Urbane) Austerität (1)
- Adorno (1)
- AfD (1)
- Angewante kritische Geographie (1)
Institute
- Geowissenschaften (46)
- Geographie (17)
- Geowissenschaften / Geographie (14)
- Biodiversität und Klima Forschungszentrum (BiK-F) (7)
- Cornelia Goethe Centrum für Frauenstudien und die Erforschung der Geschlechterverhältnisse (CGC) (3)
- Starker Start ins Studium: Qualitätspakt Lehre (3)
- Senckenbergische Naturforschende Gesellschaft (1)
Wildfire is the most common disturbance type in boreal forests and can trigger significant changes in forest composition. Waterlogging in peatlands determines the degree of tree cover and the depth of the burnt horizon associated with wildfires. However, interactions between peatland moisture, vegetation composition and flammability, and fire regime in forest and forested peatland in Eurasia remain largely unexplored, despite their huge extent in boreal regions. To address this knowledge gap, we reconstructed the Holocene fire regime, vegetation composition, and peatland hydrology at two sites located in predominantly light taiga (Pinus sylvestris Betula) with interspersed dark taiga communities (Pinus sibirica, Picea obovata, Abies sibirica) in western Siberia in the Tomsk Oblast, Russia. We found marked shifts in past water levels over the Holocene. The probability of fire occurrence and the intensification of fire frequency and severity increased at times of low water table (drier conditions), enhanced fuel dryness, and an intermediate dark-to-light taiga ratio. High water level, and thus wet peat surface conditions, prevented fires from spreading on peatland and surrounding forests. Deciduous trees (i.e. Betula) and Sphagnum were more abundant under wetter peatland conditions, and conifers and denser forests were more prevalent under drier peatland conditions. On a Holocene scale, severe fires were recorded between 7.5 and 4.5 ka with an increased proportion of dark taiga and fire avoiders (Pinus sibirica at Rybnaya and Abies sibirica at Ulukh–Chayakh) in a predominantly light taiga and fire-resister community characterised by Pinus sylvestris and lower local water level. Severe fires also occurred over the last 1.5 kyr and were associated with a declining abundance of dark taiga and fire avoiders, an expansion of fire invaders (Betula), and fluctuating water tables. These findings suggest that frequent, high-severity fires can lead to compositional and structural changes in forests when trees fail to reach reproductive maturity between fire events or where extensive forest gaps limit seed dispersal. This study also shows prolonged periods of synchronous fire activity across the sites, particularly during the early to mid-Holocene, suggesting a regional imprint of centennial- to millennial-scale Holocene climate variability on wildfire activity. Humans may have affected vegetation and fire from the Neolithic; however, increasing human presence in the region, particularly at the Ulukh–Chayakh Mire over the last 4 centuries, drastically enhanced ignitions compared to natural background levels. Frequent warm and dry spells predicted by climate change scenarios for Siberia in the future will enhance peatland drying and may convey a competitive advantage to conifer taxa. However, dry conditions will probably exacerbate the frequency and severity of wildfire, disrupt conifers' successional pathway, and accelerate shifts towards deciduous broadleaf tree cover. Furthermore, climate–disturbance–fire feedbacks will accelerate changes in the carbon balance of boreal peatlands and affect their overall future resilience to climate change.
Wildfire is the most common disturbance type in boreal forests and can trigger significant changes in forest composition. Waterlogging in peatlands determines the degree of tree cover and the depth of the burning horizon associated with wildfires. However, interactions between peatland moisture, vegetation composition and flammability, and fire regime in forested peatland in Eurasia remain largely unexplored, despite their huge extent in boreal regions. To address this knowledge gap, we reconstructed the Holocene fire regime, vegetation composition and peatland hydrology at two sites in Western Siberia near Tomsk Oblast, Russia. The palaeoecological records originate from forested peatland areas in predominantly light taiga (Pinus-Betula) with increase in dark taiga communities (Pinus sibirica, Picea obovata, Abies sibirica) towards the east. We found that the past water level fluctuated between 8 and 30 cm below the peat surface. Wet peatland conditions promoted broadleaf trees (Betula), whereas dry peatland conditions favoured conifers and a greater forest density (dark-to-light-taiga ratio). The frequency and severity of fire increased with a declining water table that enhanced fuel dryness and flammability and at an intermediate forest density. We found that the probability of intensification in fire severity increased when the water
level declined below 20 cm suggesting a tipping point in peatland hydrology at which wildfire regime intensifies. On a Holocene scale, we found two scenarios of moisture-vegetation-fire interactions. In the first, severe fires were recorded 45 between 7.5 and 4.5 ka BP with lower water level and an increased proportion of dark taiga and fire avoiders (Pinus sibirica at Rybanya and Abies sibirica at Ulukh Chayakh) mixed into the dominantly light taiga and fire-resister community of Pinus
sylvestris. The second occurred over the last 1.5 ka and was associated with fluctuating water tables, a declining abundance of fire avoiders, and an expansion of fire invaders (Betula). These findings suggest that frequent high-severity fires can lead to compositional and structural changes in forests when trees fail to reach reproductive maturity between fire events or where extensive forest gaps limit seed dispersal. This study also shows prolonged periods of synchronous fire activity across the sites, particularly during the early to mid-Holocene, suggesting a regional imprint of centennial to millennial-scale Holocene climate
variability on wildfire activity. Increasing human presence in the region of the Ulukh-Chayakh Mire near Teguldet over the last four centuries drastically enhanced ignitions compared to natural background levels. Frequent warm and dry spells predicted for the future in Siberia by climate change scenarios will enhance peatland drying and may convey a competitive advantage to conifer taxa. However, dry conditions, particularly a water table decline below the threshold of 20 cm, will probably exacerbate the frequency and severity of wildfire, disrupt conifers’ successional pathway and accelerate shifts towards more fire-adapted broadleaf tree cover. Furthermore, climate-disturbance-fire feedbacks will accelerate changes in the carbon balance of forested boreal peatlands and affect their overall future resilience to climate change.
In partially molten regions inside the earth melt buoyancy may trigger upwelling of both solid and fluid phases, i.e. diapirism. If the melt is allowed to move separately with respect to the matrix, melt perturbations may evolve into solitary porosity waves. While diapirs may form on a wide range of scales, porosity waves are restricted to sizes of a few times the compaction length. Thus, the size of a partially molten perturbation controls whether a diapir or a porosity wave will emerge. We study the transition from diapiric rise to solitary porosity waves by solving the two-phase flow equations of conservation of mass and momentum in 2D with porosity dependent matrix viscosity. We systematically vary the initial size of a porosity perturbation from 1 to 100 times the compaction length. If the perturbation is much larger than a regular solitary wave, its Stokes velocity is large and therefore faster than the segregating melt. Consequently, the fluid is not able to form a porosity wave and a diapir emerges. For small perturbations solitary waves emerge, either with a positive or negative vertical matrix velocity inside. In between the diapir and solitary wave regimes we observe a third regime of solitary wave induced focusing of melt. In these cases, diapirism is dominant but the fluid is still fast enough to locally build up small solitary waves which rise slightly faster than the diapir and form finger like structures at the front of the diapir. In our numerical simulations the width of these fingers is controlled by the compaction length or the grid size, whichever is larger. In cases where the compaction length becomes similar to or smaller than the grid size the finger-like leading solitary porosity waves are no more properly resolved, and too big and too fast waves may be the result. Therefore, one should be careful in large scale two-phase flow modelling with melt focusing especially when compaction length and grid size are of similar order.
The analysis of charcoal fragments in peat and lake sediments is the most widely used approach to reconstruct past biomass burning. With a few exceptions, this method typically relies on the quantification of the total charcoal content of the sediment. To enhance charcoal analyses for the reconstruction of past fire regimes, and to make the method more relevant to studies of both plant evolution and fire management, more information must be extracted from charcoal particles. Here, I burned in the laboratory seven fuel types comprising 17 species from boreal Siberia, and build on published schemes to develop morphometric and finer diagnostic classifications of the experimentally charred particles. As most of the species used in this study are common to Northern Hemisphere forests and peatlands, these results can be directly applicable over a broad geographical scale. Results show that the effect of temperature on charcoal production is fuel dependent. Graminoids and Sphagnum, and wood (trunk) lose the most mass at low burn temperatures, whereas heathland shrub leaves, brown moss, and ferns retain the most mass at high burn temperatures. In contrast to the wood of trunk, the wood of twigs retained their mass at intermediate temperature. This suggests that species with low mass retention at hotter burning temperatures might be underrepresented in the fossil charcoal record. Charred particle aspect ratio (L/W) appeared to be the strongest indicator of the fuel type burnt. Graminoid charcoals are more elongate than those of all other fuel types, leaf charcoals are the shortest and bulkiest, and twig and wood charcoals are intermediate. Finer diagnostic features were the most useful in distinguishing between wood, graminoid, and leaf particles, but further distinctions within these fuel types are difficult. High-aspect-ratio particles dominated by graminoid and Sphagnum morphologies are robust indicators of cooler surface fires. Contrastingly, abundant wood and leaf morphologies and low-aspect-ratio particles likely indicate higher-temperature fires. However, the overlapping morphologies of leaves and wood from trees and shrubs make it hard to distinguish between high-intensity surface fires combusting living shrubs and dead wood and leaves or high-intensity crown fires combusting living trees. Despite these limitations, the combined use of charred-particle aspect ratios and fuel morphotypes can aid in more robustly interpreting changes in fuel source and fire type, thereby substantially refining histories of past wildfires. Further fields of investigation to improve the interpretation of the fossil charcoal records will require: i) More in-depth knowledge of plant anatomy for a better determination of fuel sources; ii) Relate the proportion of particular charcoal morphotypes to the quantity of biomass; iii) Link the chemical composition of fuels, combustion temperature, and charcoal production. The advanced use of image-recognition software to collect data on other charcoal features could also aid in extracting fire temperatures as well as a change in particles morphology and morphometry during particles transportation.
In partially molten regions inside the Earth, melt buoyancy may trigger upwelling of both solid and fluid phases, i.e., diapirism. If the melt is allowed to move separately with respect to the matrix, melt perturbations may evolve into solitary porosity waves. While diapirs may form on a wide range of scales, porosity waves are restricted to sizes of a few times the compaction length. Thus, the size of a partially molten perturbation in terms of compaction length controls whether material is dominantly transported by porosity waves or by diapirism. We study the transition from diapiric rise to solitary porosity waves by solving the two-phase flow equations of conservation of mass and momentum in 2D with porosity-dependent matrix viscosity. We systematically vary the initial size of a porosity perturbation from 1.8 to 120 times the compaction length. If the perturbation is of the order of a few compaction lengths, a single solitary wave will emerge, either with a positive or negative vertical matrix flux. If melt is not allowed to move separately to the matrix a diapir will emerge. In between these end members we observe a regime where the partially molten perturbation will split up into numerous solitary waves, whose phase velocity is so low compared to the Stokes velocity that the whole swarm of waves will ascend jointly as a diapir, just slowly elongating due to a higher amplitude main solitary wave. Only if the melt is not allowed to move separately to the matrix will no solitary waves build up, but as soon as two-phase flow is enabled solitary waves will eventually emerge. The required time to build them up increases nonlinearly with the perturbation radius in terms of compaction length and might be too long to allow for them in nature in many cases.
The analysis of charcoal fragments in peat and lake sediments is the most widely used approach to reconstruct past biomass burning. With a few exceptions, this method typically relies on the quantification of the total charcoal content of the sediment. To enhance charcoal analyses for the reconstruction of past fire regimes and make the method more relevant to studies of both plant evolution and fire management, the extraction of more information from charcoal particles is critical. Here, I used a muffle oven to burn seven fuel types comprising 17 species from boreal Siberia (near Teguldet village), which are also commonly found in the Northern Hemisphere, and built on published schemes to develop morphometric and finer diagnostic classifications of the experimentally charred particles. I then combined these results with those from fossil charcoal from a peat core taken from the same location (Ulukh-Chayakh mire) in order to demonstrate the relevance of these experiments to the fossil charcoal records. Results show that graminoids, Sphagnum, and wood (trunk) lose the most mass at low burn temperatures (<300 ∘C), whereas heathland shrub leaves, brown moss, and ferns lose the most mass at high burn temperatures. This suggests that species with low mass retention in high-temperature fires are likely to be under-represented in the fossil charcoal record. The charcoal particle aspect ratio appeared to be the strongest indicator of the fuel type burnt. Graminoid charcoal particles are the most elongate (6.7–11.5), with a threshold above 6 that may be indicative of wetland graminoids; leaves are the shortest and bulkiest (2.1–3.5); and twigs and wood are intermediate (2.0–5.2). Further, the use of fine diagnostic features was more successful in separating wood, graminoids, and leaves, but it was difficult to further differentiate these fuel types due to overlapping features. High-aspect-ratio particles, dominated by graminoid and Sphagnum morphologies, may be robust indicators of low-temperature surface fires, whereas abundant wood and leaf morphologies as well as low-aspect-ratio particles are indicative of higher-temperature fires. However, the overlapping morphologies of leaves and wood from trees and shrubs make it hard to distinguish between high-intensity surface fires, combusting living shrubs and dead wood and leaves, and high-intensity crown fires that have burnt living trees. Distinct particle shape may also influence charcoal transportation, with elongated particles (graminoids) potentially having a more heterogeneous distribution and being deposited farther away from the origin of fire than the rounder, polygonal leaf particles. Despite these limitations, the combined use of charred-particle aspect ratios and fuel morphotypes can aid in the more robust interpretation of fuel source and fire-type changes. Lastly, I highlight the further investigations needed to refine the histories of past wildfires.
Deformation in the upper mantle is localized in shear zones. In order to localize strain, weakening has to occur, which can be achieved by a reduction in grain size. In order for grains to remain small and preserve shear zones, phases have to mix. Phase mixing leads to dragging or pinning of grain boundaries which slows down or halts grain growth. Multiple phase mixing processes have been suggested to be important during shear zone evolution. The importance of a phase mixing process depends on the geodynamic setting. This study presents detailed microstructural analysis of spinel bearing shear zones from the Erro-Tobbio peridotite (Italy) that formed during pre-alpine rifting. The first stage of deformation occurred under melt-free conditions, during which clinopyroxene and olivine porphyroclasts dynamically recrystallized. With ongoing extension, silica-undersaturated melt percolated through the shear zones and reacted with the clinopyroxene neoblasts, forming olivine–clinopyroxene layers. Furthermore, the melt reacted with orthopyroxene porphyroclasts, forming fine-grained polymineralic layers (ultramylonites) adjacent to the porphyroclasts. Strain rates in these layers are estimated to be about an order of magnitude faster than within the olivine-rich matrix. This study demonstrates the importance of melt-rock reactions for grain size reduction, phase mixing and strain localization in these shear zones.
Die angespannte Lage am Wohnungsmarkt hat in vielen Städten eine neue Welle von Verdrängungsprozessen induziert und insbesondere die Situation einkommensschwacher Haushalte häufig prekär werden lassen. Angesichts dieser Entwicklungen haben sich vielerorts mietenpolitische Bewegungen konstituiert, die sich für eine Abkehr von einer neoliberalisierten und zunehmend finanzialisierten Wohnungsversorgung einsetzen. Lisa Vollmer nimmt in ihrer Forschungsarbeit zwei solcher Bewegungen in den Blick und fragt danach, wie sich politische Kollektivität in den alltäglichen Praktiken von Mieter*innen in Berlin bzw. New York formiert.
Drought is understood as both a lack of water (i.e., a deficit compared to demand) and a temporal anomaly in one or more components of the hydrological cycle. Most drought indices, however, only consider the anomaly aspect, i.e., how unusual the condition is. In this paper, we present two drought hazard indices that reflect both the deficit and anomaly aspects. The soil moisture deficit anomaly index, SMDAI, is based on the drought severity index, DSI (Cammalleri et al., 2016), but is computed in a more straightforward way that does not require the definition of a mapping function. We propose a new indicator of drought hazard for water supply from rivers, the streamflow deficit anomaly index, QDAI, which takes into account the surface water demand of humans and freshwater biota. Both indices are computed and analyzed at the global scale, with a spatial resolution of roughly 50 km, for the period 1981–2010, using monthly time series of variables computed by the global water resources and the model WaterGAP 2.2d. We found that the SMDAI and QDAI values are broadly similar to values of purely anomaly-based indices. However, the deficit anomaly indices provide more differentiated spatial and temporal patterns that help to distinguish the degree and nature of the actual drought hazard to vegetation health or the water supply. QDAI can be made relevant for stakeholders with different perceptions about the importance of ecosystem protection, by adapting the approach for computing the amount of water that is required to remain in the river for the well-being of the river ecosystem. Both deficit anomaly indices are well suited for inclusion in local or global drought risk studies.
Analysing the composition of ambient ultrafine particles (UFPs) is a challenging task due to the low mass and chemical complexity of small particles, yet it is a prerequisite for the identification of particle sources and the assessment of potential health risks. Here, we show the molecular characterization of UFPs, based on cascade impactor (Nano-MOUDI) samples that were collected at an air quality monitoring station near one of Europe's largest airports, in Frankfurt, Germany. At this station, particle-size-distribution measurements show an enhanced number concentration of particles smaller than 50 nm during airport operating hours. We sampled the lower UFP fraction (0.010–0.018, 0.018–0.032, 0.032–0.056 µm) when the air masses arrived from the airport. We developed an optimized filter extraction procedure using ultra-high-performance liquid chromatography (UHPLC) for compound separation and a heated electrospray ionization (HESI) source with an Orbitrap high-resolution mass spectrometer (HRMS) as a detector for organic compounds. A non-target screening detected ∼200 organic compounds in the UFP fraction with sample-to-blank ratios larger than 5. We identified the largest signals as homologous series of pentaerythritol esters (PEEs) and trimethylolpropane esters (TMPEs), which are base stocks of aircraft lubrication oils. We unambiguously attribute the majority of detected compounds to jet engine lubrication oils by matching retention times, high-resolution and accurate mass measurements, and comparing tandem mass spectrometry (MS2) fragmentation patterns between both ambient samples and commercially available jet oils. For each UFP stage, we created molecular fingerprints to visualize the complex chemical composition of the organic fraction and their average carbon oxidation state. These graphs underline the presence of the homologous series of PEEs and TMPEs and the appearance of jet oil additives (e.g. tricresyl phosphate, TCP). Targeted screening of TCP confirmed the absence of the harmful tri-ortho isomer, while we identified a thermal transformation product of TMPE-based lubrication oil (trimethylolpropane phosphate, TMP-P). Even though a quantitative determination of the identified compounds is limited, the presented method enables the qualitative detection of molecular markers for jet engine lubricants in UFPs and thus strongly improves the source apportionment of UFPs near airports.