550 Geowissenschaften
Refine
Year of publication
Document Type
- Article (959)
- Doctoral Thesis (198)
- Contribution to a Periodical (33)
- Book (26)
- Working Paper (22)
- Part of Periodical (21)
- Conference Proceeding (18)
- Preprint (10)
- Part of a Book (9)
- Diploma Thesis (8)
Language
Keywords
- climate change (11)
- Climate change (8)
- Klima (8)
- Klimaänderung (7)
- Modellierung (7)
- COSMO-CLM (6)
- Klimawandel (6)
- Palaeoclimate (6)
- precipitation (6)
- Atmospheric chemistry (5)
Institute
- Geowissenschaften (803)
- Geowissenschaften / Geographie (187)
- Biodiversität und Klima Forschungszentrum (BiK-F) (68)
- Geographie (60)
- Senckenbergische Naturforschende Gesellschaft (60)
- Präsidium (45)
- Extern (28)
- Biowissenschaften (23)
- Physik (18)
- Frankfurt Institute for Advanced Studies (FIAS) (15)
Enduring and extensive heavy precipitation events associated with widespread river floods are among the main natural hazards affecting central Europe. Since such events are characterized by long return periods, it is difficult to adequately quantify their frequency and intensity solely based on the available observations of precipitation. Furthermore, long-term observations are rare, not homogeneous in space and time, and thus not suitable to running hydrological models (HMs) with respect to extremes. To overcome this issue, we make use of the recently introduced LAERTES-EU (LArge Ensemble of Regional climaTe modEl Simulations for EUrope) data set, which is an ensemble of regional climate model simulations providing over 12 000 simulated years. LAERTES-EU is adapted for use in an HM to calculate discharges for large river basins by applying quantile mapping with a parameterized gamma distribution to correct the mainly positive bias in model precipitation. The Rhine basin serves as a pilot area for calibration and validation. The results show clear improvements in the representation of both precipitation (e.g., annual cycle and intensity distributions) and simulated discharges by the HM after the bias correction. Furthermore, the large size of LAERTES-EU also improves the statistical representativeness for high return values above 100 years of discharges. We conclude that the bias-corrected LAERTES-EU data set is generally suitable for hydrological applications and posterior risk analyses. The results of this pilot study will soon be applied to several large river basins in central Europe.
Enduring and extensive heavy precipitation events associated with widespread river floods are among the main natural hazards affecting central Europe. Since such events are characterized by long return periods, it is difficult to adequately quantify their frequency and intensity solely based on the available observations of precipitation. Furthermore, long-term observations are rare, not homogeneous in space and time, and thus not suitable to running hydrological models (HMs) with respect to extremes. To overcome this issue, we make use of the recently introduced LAERTES-EU (LArge Ensemble of Regional climaTe modEl Simulations for EUrope) data set, which is an ensemble of regional climate model simulations providing over 12 000 simulated years. LAERTES-EU is adapted for use in an HM to calculate discharges for large river basins by applying quantile mapping with a parameterized gamma distribution to correct the mainly positive bias in model precipitation. The Rhine basin serves as a pilot area for calibration and validation. The results show clear improvements in the representation of both precipitation (e.g., annual cycle and intensity distributions) and simulated discharges by the HM after the bias correction. Furthermore, the large size of LAERTES-EU also improves the statistical representativeness for high return values above 100 years of discharges. We conclude that the bias-corrected LAERTES-EU data set is generally suitable for hydrological applications and posterior risk analyses. The results of this pilot study will soon be applied to several large river basins in central Europe.
The formation of ice particles in Earth's atmosphere strongly influences the dynamics and optical properties of clouds and their impacts on the climate system. Ice formation in clouds is often triggered heterogeneously by ice-nucleating particles (INPs) that represent a very low number of particles in the atmosphere. To date, many sources of INPs, such as mineral and soil dust, have been investigated and identified in the low and mid latitudes. Although less is known about the sources of ice nucleation at high latitudes, efforts have been made to identify the sources of INPs in the Arctic and boreal environments. In this study, we investigate the INP emission potential from high-latitude boreal forests in the mixed-phase cloud regime. We introduce the HyICE-2018 measurement campaign conducted in the boreal forest of Hyytiälä, Finland, between February and June 2018. The campaign utilized the infrastructure of the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) II, with additional INP instruments, including the Portable Ice Nucleation Chamber I and II (PINC and PINCii), the SPectrometer for Ice Nuclei (SPIN), the Portable Ice Nucleation Experiment (PINE), the Ice Nucleation SpEctrometer of the Karlsruhe Institute of Technology (INSEKT) and the Microlitre Nucleation by Immersed Particle Instrument (µL-NIPI), used to quantify the INP concentrations and sources in the boreal environment. In this contribution, we describe the measurement infrastructure and operating procedures during HyICE-2018, and we report results from specific time periods where INP instruments were run in parallel for inter-comparison purposes. Our results show that the suite of instruments deployed during HyICE-2018 reports consistent results and therefore lays the foundation for forthcoming results to be considered holistically. In addition, we compare measured INP concentrations to INP parameterizations, and we observe good agreement with the Tobo et al. (2013) parameterization developed from measurements conducted in a ponderosa pine forest ecosystem in Colorado, USA.
In this paper, we explore different prognostic methods to account for skin sea surface temperature diurnal variations in a coupled ocean–atmosphere regional model of the Mediterranean Sea. Our aim is to characterise the sensitivity of the considered methods with respect to the underlying assumption of how the solar radiation shapes the warm layer of the ocean. All existing prognostic methods truncate solar transmission coefficient at a warm-layer reference depth that is constant in space and time; instead, we implement a new scheme where this latter is estimated from a chlorophyll dataset as the e-folding depth of solar transmission, which thus allows it to vary in space and time depending on seawater's transparency conditions. Comparison against satellite data shows that our new scheme, compared to the one already implemented within the ocean model, improves the spatially averaged diurnal signal, especially during winter, and the seasonally averaged one in spring and autumn, while showing a monthly basin-wide averaged bias smaller than 0.1 K year-round. In April, when most of the drifters' measurements are available, the new scheme mitigates the bias during nighttime, keeping it positive but smaller than 0.12 K during the rest of the monthly averaged day. The new scheme implemented within the ocean model improves the old one by about 0.1 K, particularly during June. All the methods considered here showed differences with respect to objectively analysed profiles confined between 0.5 K during winter and 1 K in summer for both the eastern and the western Mediterranean regions, especially over the uppermost 60 m. The new scheme reduces the RMSE on the top 15 m in the central Mediterranean for summertime months compared to the scheme already implemented within the ocean model. Overall, the surface net total heat flux shows that the use of a skin sea surface temperature (SST) parameterisation brings the budget about 1.5 W m−2 closer to zero on an annual basis, despite all simulations showing an annual net heat loss from the ocean to the atmosphere. Our “chlorophyll-interactive” method proved to be an effective enhancement of existing methods, its strength relying on an improved physical consistency with the solar extinction implemented in the ocean component.
In this paper, we explore different prognostic methods to account for skin sea surface temperature diurnal variations in a coupled ocean-atmosphere regional model of the Mediterranean Sea. Our aim is to characterize the sensitivity of the considered methods with respect to the underlying assumption of how the solar radiation shapes the warm layer of the ocean. All existing methods truncate solar transmission coefficient at a constant warm layer reference depth; instead, we develop a new scheme where this latter is estimated from a chlorophyll dataset as the e-folding depth of solar transmission. This allows spatial and temporal variations of the warm layer extent to depend on seawater transparency. Comparison against satellite data shows that our new scheme improves the diurnal signal especially during winter, spring, and autumn, with an averaged bias on monthly scales year-round smaller than 0.1 K. In April, when most of the drifters’ measurements are available, the new scheme mitigates the bias during nighttime, keeping it positive but smaller than 0.12 K during the rest of the monthly-averaged day. The new scheme implemented within the ocean model improves the old one by about 0.1 K, particularly during June. All the methods considered here showed differences with respect to objectively analyzed profiles confined between 0.5 K during winter and 1 K in summer for both the eastern and the western Mediterranean regions, especially over the uppermost 60 m. Overall, the surface net total heat flux shows that the use of a skin SST parametrization brings the budget about 1.5 W/m2 30 closer to zero on an annual basis, despite all simulations showing an annual net heat loss from the ocean to the atmosphere. Our “chlorophyll-interactive” method proved to be an effective enhancement of existing methods, its strength relying on an improved physical consistency with the solar extinction implemented in the ocean component.
The marine coccolithophore species Emiliania huxleyi tolerates a broad range of salinity conditions over its near-global distribution, including the relatively stable physiochemical conditions of open-ocean environments and nearshore environments with dynamic and extreme short-term salinity fluctuations. Previous studies show that salinity impacts the physiology and morphology of E. huxleyi, suggesting that salinity stress influences the calcification of this globally important species. However, it remains unclear how rapidly E. huxleyi responds to salinity changes and therefore whether E. huxleyi morphology is sensitive to short-term transient salinity events (such as occur on meteorological timescales) in addition to longer-duration salinity changes. Here, we investigate the real-time growth and calcification response of two E. huxleyi strains isolated from shelf sea environments to the abrupt onset of hyposaline and hypersaline conditions over a time period of 156 h (6.5 d). Morphological responses in the size of the cell covering (coccosphere) and the calcium carbonate plates (coccoliths) that form the coccosphere occurred as rapidly as 24–48 h following the abrupt onset of salinity 25 (hyposaline) and salinity 45 (hypersaline) conditions. Generally, cells tended towards smaller coccospheres (−24 %) with smaller coccoliths (−7 % to −11 %) and reduced calcification under hyposaline conditions, whereas cells growing under hypersaline conditions had either relatively stable coccosphere and coccolith sizes (Mediterranean strain RCC1232) or larger coccospheres (+35 %) with larger coccoliths (+13 %) and increased calcification (Norwegian strain PLYB11). This short-term response is consistent with reported coccolith size trends with salinity over longer durations of low- and high-salinity exposure in culture and under natural-salinity gradients. The coccosphere size response of PLYB11 to salinity stress was greater in magnitude than was observed in RCC1232 but occurred after a longer duration of exposure to the new salinity conditions (96–128 h) compared to RCC1232. In both strains, coccosphere size changes were larger and occurred more rapidly than changes in coccolith size, which tended to occur more gradually over the course of the experiments. Variability in the magnitude and timing of rapid morphological responses to short-term salinity stress between these two strains supports previous suggestions that the response of E. huxleyi to salinity stress is strain specific. At the start of the experiments, the light condition was also switched from a light : dark cycle to continuous light, with the aim of desynchronising cell division. As cell density and mean cell size data sampled every 4 h showed regular periodicity under all salinity conditions, the cell division cycle retained its entrainment to pre-experiment light : dark conditions for the entire experiment duration. Extended acclimation periods to continuous light are therefore advisable for E. huxleyi to ensure successful desynchronisation of the cell division cycle. When working with phased or synchronised populations, data should be compared between samples taken from the same phase of the cell division cycle to avoid artificially distorting the magnitude or even direction of physiological or biogeochemical response to the environmental stressor.
The marine coccolithophore species Emiliania huxleyi tolerates a broad range of salinity conditions over its near10 global distribution, including the relatively stable physiochemical conditions of open ocean environments and nearshore environments with dynamic and extreme short-term salinity fluctuations. Previous studies show that salinity impacts the physiology and morphology of E. huxleyi, suggesting that salinity stress influences the calcification of this globally important species. However, it remains unclear how rapidly E. huxleyi responds to salinity changes and therefore whether E. huxleyi morphology is sensitive to short-term, transient salinity events (such as occur on meteorological timescales) in addition longer duration salinity changes. Here, we investigate the real-time growth and calcification response of two E. huxleyi strains isolated from shelf-sea environments to the abrupt onset of hyposaline and hypersaline conditions over a time periods of 156 h (6.5 days). Morphological responses in the size of the cellular exoskeleton (coccosphere) and the calcium carbonate plates (coccoliths) that form the coccosphere occurred as rapidly as 24-48 h following the abrupt onset of salinity (hyposaline) and salinity 45 (hypersaline) conditions. Generally, cells tended towards smaller coccospheres (-24%) with smaller coccoliths (-7 to -11%) and reduced calcification under hyposaline conditions whereas cells growing under hypersaline conditions had
either relatively stable coccosphere and coccolith sizes (Mediterranean strain RCC1232) or larger coccospheres (+35%) with larger coccoliths (+13%) and increased calcification (Norwegian strain PLYB11). This short-term response is consistent with reported coccolith size trends with salinity over longer durations of low and high salinity exposure in culture and under natural salinity gradients. The coccosphere size response of PLYB11 to salinity stress was greater in magnitude than observed in RCC1232 but occurred after a longer duration of exposure (ca. 96-128 h) to the new salinity conditions compared to RCC1232. In both strains, coccosphere size changes were larger and occurred more rapidly than changes in coccolith size, which tended to occur more gradually over the course of the experiments. Variability in the magnitude and timing of rapid morphological
responses to short-term salinity stress between these two strains supports previous suggestions that the response of E. huxleyi to salinity stress is strain specific. At the start of the experiments, the light condition was also switched from a light: dark cycle
to continuous light with the aim of desynchronising cell division. As cell density and mean cell size data sampled every 4 h showed regular periodicity under all salinity conditions, the cell division cycle retained its entrainment to pre-experiment light:
dark conditions for the entire experiment duration. Extended acclimation periods to continuous light are therefore advisable for E. huxleyi to ensure successful desynchronisation of the cell division cycle. When working with phased or synchronised populations, data should be compared between samples taken from the same phase of the cell division cycle to avoid artificially distorting the magnitude or even direction of physiological or (bio)geochemical response to the environmental stressor.
Black shale sediments from the Barremian to Aptian South Atlantic document intense and widespread burial of marine organic carbon during the initial stages of seafloor spreading between Africa and South America. The enhanced sequestration of atmospheric CO2 makes these young ocean basins potential drivers of the Early Cretaceous carbon cycle and climate perturbations. The opening of marine gateways between initially restricted basins and related circulation and ventilation changes are a commonly invoked explanation for the transient formation and disappearance of these regional carbon sinks. However, large uncertainties in paleogeographic reconstructions limit the interpretation of available paleoceanographic data and prevent any robust model-based quantifications of the proposed circulation and carbon burial changes. Here, we present a new approach to assess the principal controls on the Early Cretaceous South Atlantic and Southern Ocean circulation changes under full consideration of the uncertainties in available boundary conditions. Specifically, we use a large ensemble of 36 climate model experiments to simulate the Barremian to Albian progressive opening of the Falkland Plateau and Georgia Basin gateways with different configurations of the proto-Drake Passage, the Walvis Ridge, and atmospheric CO2 concentrations. The experiments are designed to complement available geochemical data across the regions and to test circulation scenarios derived from them. All simulations show increased evaporation and intermediate water formation at subtropical latitudes that drive a meridional overturning circulation whose vertical extent is determined by the sill depth of the Falkland Plateau. Densest water masses formed in the southern Angola Basin and potentially reached the deep Cape Basin as Walvis Ridge Overflow Water. Paleogeographic uncertainties are as important as the lack of precise knowledge of atmospheric CO2 levels for the simulated temperature and salinity spread in large parts of the South Atlantic. Overall temperature uncertainties are up to 15 °C and increase significantly with water depth. The ensemble approach reveals temporal changes in the relative importance of geographic and radiative forcings for the simulated oceanographic conditions and, importantly, nonlinear interactions between them. Progressive northward opening of the highly restricted Angola Basin increased the sensitivity of local overturning and upper ocean stratification to atmospheric CO2 concentrations due to large-scale changes in the hydrological cycle, while the chosen proto-Drake Passage depth is critical for the ocean dynamics and CO2 response in the southern South Atlantic. Finally, the simulated processes are integrated into a recent carbon burial framework to document the principal control of the regional gateway evolution on the progressive shift from the prevailing saline and oxygen-depleted subtropical water masses to the dominance of ventilated high-latitude deep waters.
Black shale sediments from the Barremian to Aptian South Atlantic document the intense and widespread burial of marine organic carbon during the initial stages of seafloor spreading between Africa and South America. The enhanced sequestration of atmospheric CO2 makes these young ocean basins potential drivers of the Early Cretaceous carbon cycle and climate perturbations. The opening of marine gateways between initially restricted basins and related circulation and ventilation changes are a commonly invoked explanation for the transient formation and disappearance of these regional carbon sinks. However, large uncertainties in palaeogeographic reconstructions limit the interpretation of available palaeoceanographic data and prevent any robust model-based quantifications of the proposed circulation and carbon burial changes. Here, we present a new approach to assess the principal controls on the Early Cretaceous South Atlantic and Southern Ocean circulation changes under full consideration of the uncertainties in available boundary conditions. Specifically, we use a large ensemble of 36 climate model experiments to simulate the Barremian to Albian progressive opening of the Falkland Plateau and Georgia Basin gateways with different configurations of the proto-Drake Passage, the Walvis Ridge, and atmospheric CO2 concentrations. The experiments are designed to complement available geochemical data across the regions and to test circulation scenarios derived from them. All simulations show increased evaporation and intermediate water formation at subtropical latitudes that drive a meridional overturning circulation whose vertical extent is determined by the sill depth of the Falkland Plateau. The densest water masses formed in the southern Angola Basin and potentially reached the deep Cape Basin as Walvis Ridge Overflow Water. Palaeogeographic uncertainties are as important as the lack of precise knowledge of atmospheric CO2 levels for the simulated temperature and salinity spread in large parts of the South Atlantic. Overall temperature uncertainties reach up to 15 °C and increase significantly with water depth. The ensemble approach reveals temporal changes in the relative importance of geographic and radiative forcings for the simulated oceanographic conditions and, importantly, nonlinear interactions between them. The progressive northward opening of the highly restricted Angola Basin increased the sensitivity of local overturning and upper-ocean stratification to atmospheric CO2 concentrations due to large-scale changes in the hydrological cycle, while the chosen proto-Drake Passage depth is critical for the ocean dynamics and CO2 response in the southern South Atlantic. Finally, the simulated processes are integrated into a recent carbon burial framework to document the principal control of the regional gateway evolution on the progressive shift from the prevailing saline and oxygen-depleted subtropical water masses to the dominance of ventilated high-latitude deep waters.
Thermally driven local winds are ubiquitous in deep Alpine valleys during fair weather conditions resulting in a unique wind climatology for any given valley. The accurate forecasting of these local wind systems is challenging, as they are the result of complex and multi-scale interactions. Even more so, if the aim is an accurate forecast of the winds from the near-surface to the free atmosphere, which can be considered a prerequisite for the accurate prediction of mountain weather. This study combines the evaluation of the simulated surface winds in several Alpine valleys with a more detailed evaluation of the wind evolution for a particular location in the Swiss Rhone valley, at the town of Sion during the month of September 2016. Four numerical simulations using the COSMO model are evaluated, two using a grid spacing of 1.1 km and two with a grid spacing of 550 m. For each resolution, one simulation is initialised with the soil moisture from the COSMO analysis and one with an increased soil moisture (+30%). In a first part, a comparison with observations from the operational measurement network of MeteoSwiss is used to evaluate the model performance, while, in a second part, data from a wind profiler stationed at Sion airport is used for a more detailed evaluation of the valley atmosphere near the town of Sion. The analysis focuses on 18 valley wind days observed in the Sion region in September 2016. Only the combination of an increased soil moisture and a finer grid spacing resulted in a significant improvement of the simulated flow patterns in the Sion region. This includes a stronger and more homogeneous along-valley wind in the Wallis and a more realistic cross-valley wind and temperature profile near the town of Sion. It is shown that the remaining differences between the observed and simulated near-surface wind are likely due to very local topographic features. Small-scale hills, not resolved on even the finer model grid, result in a constriction of the valley cross section and an acceleration of the observed low-level up-valley wind in the region of Sion.