610 Medizin und Gesundheit
Refine
Year of publication
Document Type
- Article (4732)
- Doctoral Thesis (1806)
- Part of Periodical (236)
- Book (174)
- Contribution to a Periodical (143)
- Conference Proceeding (99)
- Preprint (39)
- Part of a Book (37)
- Review (24)
- Working Paper (17)
Language
- English (4679)
- German (2602)
- Latin (26)
- Multiple languages (13)
- mis (12)
- French (11)
- Portuguese (1)
- Romanian (1)
- Russian (1)
- Spanish (1)
Keywords
- inflammation (78)
- COVID-19 (39)
- SARS-CoV-2 (39)
- apoptosis (38)
- glioblastoma (34)
- cancer (33)
- breast cancer (32)
- Inflammation (31)
- autophagy (25)
- wassergefiltertes Infrarot A (wIRA) (25)
Institute
- Medizin (5828)
- Pharmazie (295)
- Präsidium (226)
- Biowissenschaften (211)
- Biochemie und Chemie (172)
- Biochemie, Chemie und Pharmazie (133)
- Sportwissenschaften (125)
- Frankfurt Institute for Advanced Studies (FIAS) (104)
- Georg-Speyer-Haus (97)
- Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit (69)
Ribosomes catalyze protein synthesis by cycling through various functional states. These states have been extensively characterized in vitro, yet their distribution in actively translating human cells remains elusive. Here, we optimized a cryo-electron tomography-based approach and resolved ribosome structures inside human cells with a local resolution of up to 2.5 angstroms. These structures revealed the distribution of functional states of the elongation cycle, a Z tRNA binding site and the dynamics of ribosome expansion segments. In addition, we visualized structures of Homoharringtonine, a drug for chronic myeloid leukemia treatment, within the active site of the ribosome and found that its binding reshaped the landscape of translation. Overall, our work demonstrates that structural dynamics and drug effects can be assessed at near-atomic detail within human cells.
Orientation hypercolumns in the visual cortex are delimited by the repeating pinwheel patterns of orientation selective neurons. We design a generative model for visual cortex maps that reproduces such orientation hypercolumns as well as ocular dominance maps while preserving retinotopy. The model uses a neural placement method based on t–distributed stochastic neighbour embedding (t–SNE) to create maps that order common features in the connectivity matrix of the circuit. We find that, in our model, hypercolumns generally appear with fixed cell numbers independently of the overall network size. These results would suggest that existing differences in absolute pinwheel densities are a consequence of variations in neuronal density. Indeed, available measurements in the visual cortex indicate that pinwheels consist of a constant number of ∼30, 000 neurons. Our model is able to reproduce a large number of characteristic properties known for visual cortex maps. We provide the corresponding software in our MAPStoolbox for Matlab.
Dendritic spines are crucial for excitatory synaptic transmission as the size of a spine head correlates with the strength of its synapse. The distribution of spine head sizes follows a lognormal-like distribution with more small spines than large ones. We analysed the impact of synaptic activity and plasticity on the spine size distribution in adult-born hippocampal granule cells from rats with induced homo- and heterosynaptic long-term plasticity in vivo and CA1 pyramidal cells from Munc-13-1-Munc13-2 knockout mice with completely blocked synaptic transmission. Neither induction of extrinsic synaptic plasticity nor the blockage of presynaptic activity degrades the lognormal-like distribution but changes its mean, variance and skewness. The skewed distribution develops early in the life of the neuron. Our findings and their computational modelling support the idea that intrinsic synaptic plasticity is sufficient for the generation, while a combination of intrinsic and extrinsic synaptic plasticity maintains lognormal like distribution of spines.
Achieving functional neuronal dendrite structure through sequential stochastic growth and retraction
(2020)
Class I ventral posterior dendritic arborisation (c1vpda) proprioceptive sensory neurons respond to contractions in the Drosophila larval body wall during crawling. Their dendritic branches run along the direction of contraction, possibly a functional requirement to maximise membrane curvature during crawling contractions. Although the molecular machinery of dendritic patterning in c1vpda has been extensively studied, the process leading to the precise elaboration of their comb-like shapes remains elusive. Here, to link dendrite shape with its proprioceptive role, we performed long-term, non-invasive, in vivo time-lapse imaging of c1vpda embryonic and larval morphogenesis to reveal a sequence of differentiation stages. We combined computer models and dendritic branch dynamics tracking to propose that distinct sequential phases of stochastic growth and retraction achieve efficient dendritic trees both in terms of wire and function. Our study shows how dendrite growth balances structure–function requirements, shedding new light on general principles of self-organisation in functionally specialised dendrites.
Dendrites display a striking variety of neuronal type-specific morphologies, but the mechanisms and principles underlying such diversity remain elusive. A major player in defining the morphology of dendrites is the neuronal cytoskeleton, including evolutionarily conserved actin-modulatory proteins (AMPs). Still, we lack a clear understanding of how AMPs might support developmental phenomena such as neuron-type specific dendrite dynamics. To address precisely this level of in vivo specificity, we concentrated on a defined neuronal type, the class III dendritic arborisation (c3da) neuron of Drosophila larvae, displaying actin-enriched short terminal branchlets (STBs). Computational modelling reveals that the main branches of c3da neurons follow a general growth model based on optimal wiring, but the STBs do not. Instead, model STBs are defined by a short reach and a high affinity to grow towards the main branches. We thus concentrated on c3da STBs and developed new methods to quantitatively describe dendrite morphology and dynamics based on in vivo time-lapse imaging of mutants lacking individual AMPs. In this way, we extrapolated the role of these AMPs in defining STB properties. We propose that dendrite diversity is supported by the combination of a common step, refined by a neuron type-specific second level. For c3da neurons, we present a molecular model of how the combined action of multiple AMPs in vivo define the properties of these second level specialisations, the STBs.
The way in which dendrites spread within neural tissue determines the resulting circuit connectivity and computation. However, a general theory describing the dynamics of this growth process does not exist. Here we obtain the first time-lapse reconstructions of neurons in living fly larvae over the entirety of their developmental stages. We show that these neurons expand in a remarkably regular stretching process that conserves their shape. Newly available space is filled optimally, a direct consequence of constraining the total amount of dendritic cable. We derive a mathematical model that predicts one time point from the previous and use this model to predict dendrite morphology of other cell types and species. In summary, we formulate a novel theory of dendrite growth based on detailed developmental experimental data that optimises wiring and space filling and serves as a basis to better understand aspects of coverage and connectivity for neural circuit formation.
Neuronal hyperexcitability is a feature of Alzheimer’s disease (AD). Three main mechanisms have been proposed to explain it: i), dendritic degeneration leading to increased input resistance, ii), ion channel changes leading to enhanced intrinsic excitability, and iii), synaptic changes leading to excitation-inhibition (E/I) imbalance. However, the relative contribution of these mechanisms is not fully understood. Therefore, we performed biophysically realistic multi-compartmental modelling of excitability in reconstructed CA1 pyramidal neurons of wild-type and APP/PS1 mice, a well-established animal model of AD. We show that, for synaptic activation, the excitability promoting effects of dendritic degeneration are cancelled out by excitability decreasing effects of synaptic loss. We find an interesting balance of excitability regulation with enhanced degeneration in the basal dendrites of APP/PS1 cells potentially leading to increased excitation by the apical but decreased excitation by the basal Schaffer collateral pathway. Furthermore, our simulations reveal that three additional pathomechanistic scenarios can account for the experimentally observed increase in firing and bursting of CA1 pyramidal neurons in APP/PS1 mice. Scenario 1: increased excitatory burst input; scenario 2: enhanced E/I ratio and scenario 3: alteration of intrinsic ion channels (IAHP down-regulated; INap, INa and ICaT up-regulated) in addition to enhanced E/I ratio. Our work supports the hypothesis that pathological network and ion channel changes are major contributors to neuronal hyperexcitability in AD. Overall, our results are in line with the concept of multi-causality and degeneracy according to which multiple different disruptions are separately sufficient but no single disruption is necessary for neuronal hyperexcitability.
Reducing neuronal size results in less cell membrane and therefore lower input conductance. Smaller neurons are thus more excitable as seen in their voltage responses to current injections in the soma. However, the impact of a neuron’s size and shape on its voltage responses to synaptic activation in dendrites is much less understood. Here we use analytical cable theory to predict voltage responses to distributed synaptic inputs and show that these are entirely independent of dendritic length. For a given synaptic density, a neuron’s response depends only on the average dendritic diameter and its intrinsic conductivity. These results remain true for the entire range of possible dendritic morphologies irrespective of any particular arborisation complexity. Also, spiking models result in morphology invariant numbers of action potentials that encode the percentage of active synapses. Interestingly, in contrast to spike rate, spike times do depend on dendrite morphology. In summary, a neuron’s excitability in response to synaptic inputs is not affected by total dendrite length. It rather provides a homeostatic input-output relation that specialised synapse distributions, local non-linearities in the dendrites and synaptic plasticity can modulate. Our work reveals a new fundamental principle of dendritic constancy that has consequences for the overall computation in neural circuits.
Excess neuronal branching allows for innervation of specific dendritic compartments in cortex
(2019)
The connectivity of cortical microcircuits is a major determinant of brain function; defining how activity propagates between different cell types is key to scaling our understanding of individual neuronal behaviour to encompass functional networks. Furthermore, the integration of synaptic currents within a dendrite depends on the spatial organisation of inputs, both excitatory and inhibitory. We identify a simple equation to estimate the number of potential anatomical contacts between neurons; finding a linear increase in potential connectivity with cable length and maximum spine length, and a decrease with overlapping volume. This enables us to predict the mean number of candidate synapses for reconstructed cells, including those realistically arranged. We identify an excess of putative connections in cortical data, with densities of neurite higher than is necessary to reliably ensure the possible implementation of any given connection. We show that potential contacts allow the particular implementation of connectivity at a subcellular level.
Binding of the spike protein of SARS-CoV-2 to the human angiotensin-converting enzyme 2 (ACE2) receptor triggers translocation of the virus into cells. Both the ACE2 receptor and the spike protein are heavily glycosylated, including at sites near their binding interface. We built fully glycosylated models of the ACE2 receptor bound to the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Using atomistic molecular dynamics (MD) simulations, we found that the glycosylation of the human ACE2 receptor contributes substantially to the binding of the virus. Interestingly, the glycans at two glycosylation sites, N90 and N322, have opposite effects on spike protein binding. The glycan at the N90 site partly covers the binding interface of the spike RBD. Therefore, this glycan can interfere with the binding of the spike protein and protect against docking of the virus to the cell. By contrast, the glycan at the N322 site interacts tightly with the RBD of the ACE2-bound spike protein and strengthens the complex. Remarkably, the N322 glycan binds to a conserved region of the spike protein identified previously as a cryptic epitope for a neutralizing antibody. By mapping the glycan binding sites, our MD simulations aid in the targeted development of neutralizing antibodies and SARS-CoV-2 fusion inhibitors.