Refine
Year of publication
- 2007 (39) (remove)
Document Type
- Doctoral Thesis (33)
- Article (5)
- Report (1)
Language
- German (39) (remove)
Has Fulltext
- yes (39)
Is part of the Bibliography
- no (39)
Keywords
- Makromolekül (2)
- Naturstoff (2)
- Silicium (2)
- ABC transporter (1)
- ABC-Transporter (1)
- Alkaloide (1)
- Alzheimer's disease (1)
- Alzheimer-Krankheit (1)
- Amyloid (1)
- Anorganische Synthese (1)
Institute
- Biochemie und Chemie (39) (remove)
Für den mitochondrialen ABC-Transporter MDL1 (multidrug resistance like) aus Saccharomyces cerevisiae wurde eine Funktion als intrazellulärer Peptidexporter vorhergesagt. MDL1 ist wahrscheinlich am Export von Degradationsprodukten der m-AAA (matrixoriented ATPases associated with a variety of cellular activities) Protease in den Intermembranraum beteiligt (Young et al., 2001). Das MDL1-Homodimer besteht aus zwei Transmembrandomänen mit jeweils sechs potentiellen α-Helices und zwei Nukleotidbindedomänen. Eine Überexpression des ABC-Transporters in E. coli und L. lactis ist nicht möglich. Nur im homologen Expressionssystem kann eine bis zu 100-fach gesteigerte MDL1-Konzentration in Anwesenheit des induzierbaren GAL1-Promotors gegenüber dem endogenen Protein erreicht werden. Differentielle Zentrifugation, Immunogold-Markierungen und Proteasezugänglichkeitsexperimente zeigen, dass MDL1 ausschließlich in der mitochondrialen Innenmembran lokalisiert ist und die Nukleotidbindedomänen zur Matrix orientiert vorliegen. Mit Hilfe von Edman Sequenzierung des gereinigten His-getaggten MDL1 wurde eine 59 Aminosäuren lange mitochondriale Leitsequenz identifiziert. Die Deletionsvariante MDL1(60-695) wird ausschließlich in den Membranen des Endoplasmatischen Retikulums exprimiert. Ihre Motordomänen liegen zytosolisch orientiert vor. Beide MDL1-Varianten bilden homooligomere Komplexe vergleichbarer Größe und weisen ähnliche ATPase Aktivitäten auf. Die physiologischen Konsequenzen der Lokalisation in unterschiedlichen Membranen wurden in Zellen näher untersucht, deren mitochondrialer ABC-Transporter ATM1 (ABC transporter of mitochondria) deletiert ist. ATM1 ist von essentieller Bedeutung für die Biogenese zytosolischer Eisen/Schwefel-Proteine (Lill und Kispal, 2000). Der mitochondriale MDL1-Komplex kann zum Teil die ATM1-Funktion übernehmen, wohingegen ER-ständiges MDL1, als auch ATP Binde- und Hydrolyse inaktive Mutanten, den Δatm1 Wachstumsphänotyp nicht komplementieren können. Die physiologische Funktion von MDL1 ist somit eng mit der mitochondrialen Innenmembran und der Funktionalität des Proteins verbunden. Durch in vivo Komplementationsstudien wurden zwei mitochondriale ABC-Transporter ABCB10 und Pa_2_9660 aus H. sapiens bzw. P. anserina als funktionelle MDL1-Homologe identifiziert.
Chlamydomonas reinhardtii ist eines der bekanntesten Modellsysteme der Forschung, um photo-, zell- und molekularbiologische Fragestellungen zu untersuchen. Die phototaktischen Reaktionen dieser einzelligen Grünalge werden durch mikrobielle Rhodopsine, sogenannte Photorezeptoren initiiert, deren Chromophor all-trans-Retinal ist. Eines dieser Rhodopsine ist Channelrhodopsin 2 (ChR2). Ein Sequenzvergleich mit anderen mikrobiellen Rhodopsinen aus Archaebakterien, wie z.B. der lichtgetriebenen Protonenpumpe Bakteriorhodopsin, zeigt eine Homologie von bis zu 20 %. Aus diesem Grund kann angenommen werden, dass die hydrophobe N-terminale Hälfte mit circa 300 von 737 Aminosäuren ebenso aus einem Siebentransmembranhelixmotiv besteht, wie dies für Rhodopsinmoleküle typisch ist. Seit der Entdeckung 2003 durch Nagel et al. ist bekannt, dass es sich bei ChR2 um einen lichtgetriebenen, kationenselektiven Ionenkanal handelt, der in dieser Form bisher nicht bekannt war. Diese biophysikalische Charakteristik konnte durch detaillierte elektrophysiologische Daten erhoben werden. Sie lieferten zudem die Erkenntnis, dass ChR2 als „Werkzeug“ in der Neurobiologie verwendet werden kann, da die lichtinduzierte Depolarisation zum Feuern von Aktionspotentialen in ChR2-exprimierenden Neuronen führt. Die vorliegende Arbeit sollte dazu beitragen, die molekularen Mechanismen von ChR2 aufzuklären, indem elektrophysiologische, spektroskopische und biochemische Daten miteinander korreliert wurden. Dazu wurde ChR2 funktionell in der methylotrophen Hefe Pichia pastoris exprimiert. Ein Glykosylierungstest konnte belegen, dass Pichia pastoris in der Lage ist, die für ChR2 erforderliche N-Glykosylierung durchzuführen. Mit einer 90%igen Expression war es somit möglich, ausreichend Protein für eine Metallchelat-Affinitätschromatographie zu gewinnen. Weiterhin konnte die bestehende Funktionalität nach der Isolierung von ChR2 nachgewiesen werden. Dies erfolgte zum einen über Messungen des charakteristischen Photostroms mittels der BLM-Technik. Zum anderen konnte dies durch spektroskopische Messungen der spezifischen Absorption von ChR2 bei 480 nm bestätigt werden. Die zeitaufgelöste Laserblitzabsorptionsspektroskopie lieferte zudem Differenzspektren des isolierten ChR2, die erstmalig das Vorhandensein eines spektral verschiedenen Intermediats bei 540 nm zeigten. Zusammen mit dem Zeitverlauf aller vier korrespondierenden Intermediate und der Hinzunahme elektrophysiologischer Daten konnte somit ein linearer Photozyklus bestehend aus vier Zuständen erstellt werden (erstellt durch Dr. Christian Bamann). Die ersten drei Intermediate des Photozyklus P1-P3 werden demnach durch die rotverschobene Spezies beschrieben, mit einer Relaxationszeit von unter einer Millisekunde. Dieses rote Intermediat spiegelt die Konformationsänderung des Retinals wider und geht mit dem Öffnen des Kanals einher. Die Zustände P2 und P3 konnten beide als kationenleitende Zustände identifiziert werden. Das Schließen des Kanals wird durch den Übergang von P3 zu P4 (spektral mit dem Grundzustand gleich) vermittelt. Das Zurückkehren in den Grundzustand folgt einem langsamen Prozess im Bereich von mehreren Sekunden. Biochemische, spektroskopische und elektrophysiologische Daten haben damit erfolgreich zur weiteren Aufklärung der molekularen Funktionsweise von ChR2 beigetragen. Mit diesen Ergebnissen ist nun die Erschließung neuer Informationen über die verschiedenen Signaltransduktionswege von Membranproteinen möglich.
Eine Stiftungsprofessur ermöglicht die konzentrierte Forschung auf einem speziellen Fachgebiet und schafft den notwendigen Freiraum, Neues zu erproben. Insbesondere kann sie dazu dienen, Brücken zwischen Disziplinen zu errichten. Mit diesem Ziel wurde vor fünf Jahren die Beilstein-Stiftungsprofessur für Chemieinformatik an der Johann Wolfgang Goethe-Universität eingerichtet. Gefördert von dem in Frankfurt am Main ansässigen Beilstein-Institut zur Förderung der Chemischen Wissenschaften, wurde sie in enger Zusammenarbeit mit dem Institut für Organische Chemie und Chemische Biologie unter der Federführung von Prof. Dr. Michael Göbel konzipiert. Nachdem die Förderperiode von fünf Jahren im März 2007 ausgelaufen war, ist die Stiftungsprofessur nahtlos in den ordentlichen Universitätsbetrieb übernommen worden. Dies gibt Anlass, ein Fazit zu ziehen.
Das Bakterium Thermus thermophilus hat sich in den letzten Jahren zu einem Modell für thermophile Organismen entwickelt. Die maximale Wachstumstemperatur liegt bei bis zu 85°C, so dass auch Proteine und die gesamte Zellstruktur an diese hohen Temperaturen adaptiert sein müssen. Aufgrund der allgemein erhöhten Stabilität werden diese Proteine zunehmend für biotechnologische Prozesse und zur Strukturbestimmung verwendet. Im Energiehaushalt der Zelle ist der Elektronentransfer von NADH zu molekularem Sauerstoff ein wesentlicher Bestandteil und wird durch transmembrane Enzymkomplexe vermittelt. In dieser Arbeit konnten vier direkt aufeinanderfolgende Gene (fbcC, fbcX, fbcF, fbcB) identifiziert werden, die in einem 3,1 kb großen Operon mit einem GC-Gehalt von 69% organisiert sind und für die Untereinheiten eines putativen Thermus bc-Komplexes kodieren. Die in silico translatierte DNA-Information konnte für ausführliche Sequenzvergleiche und eine erste Charakterisierung der bc-Untereinheiten genutzt werden. Während Cytochrom b und das Rieske-Protein typische Eigenschaften zu anderen prokaryotischen Untereinheiten aufweisen, unterscheidet sich die Cytochrom c-Untereinheit hinsichtlich Topologie und Verwandtschaft von klassischen c1-Komponenten. Darüber hinaus wurde eine zusätzliche Untereinheit FbcX identifiziert, die keine Entsprechung in bisher bekannten bc-Komplexen hat. Das gesamte Operon mit vorangestellter d70 Promotorregion wurde amplifiziert, in einen Thermus/E.coli-Shuttlevektor mit hitzeoptimierter Kanamycinresistenz eingefügt und so plasmidkodiert für die Überexpression in T. thermophilus HB27 genutzt. Der membranständige Gesamtkomplex wurde nach Solubilisierung mit ß-D-Decyl-Maltosid stabil in Lösung gebracht und anschließend über eine Metallaffinitätssäule stöchiometrisch als vier-Untereinheiten Komplex aufgereinigt. Der Gesamtkomplex sowie seine Einzelkomponenten und deren Cofaktoren waren somit für eine nähere Charakterisierung verfügbar. Alle vier Genprodukte konnten als Untereinheiten des bc-Komplexes in T. thermophilus über N-terminale Sequenzierung und MALDI-MS/MS eindeutig identifiziert werden. Der in vitro Aktivitätstest zeigte keine Hemmbarkeit des aufgereinigten Thermus Komplexes durch klassische bc-Inhibitoren, was auf eine deutlich abweichende Substratbindung dieses Menachinol-oxidierenden Komplexes hinweist. Durch Optimierung des Thermus/E.coli-Shuttlevektors wurde auch die homologe Überexpression weiterer Thermus-Membranproteine ermöglicht. Dazu gehört neben der ba3-Oxidase auch ein MDL-ähnlicher ABC-Transporter. Weiterhin wurde gezeigt, dass die thermostabilen Eigenschaften sowohl des bc-Komplexes als auch des ABC-Transporters in Detergenzumgebung erhalten bleiben. Dieser Nachweis konnte darüber hinaus auch für den heterolog exprimierten und aus E. coli aufgereinigten ABC-Transporter erbracht werden, der im isolierten Zustand die gleiche Aktivität wie das aus Thermus aufgereinigte Äquivalent aufweist. Neben dem bc-Gesamtkomplex, der ba3-Oxidase und Cytochrom c552 wurden in dieser Arbeit weitere Komponenten der thermophilen Atmungskette in löslicher Form oder mit Membrananker, zum Teil auch heterolog in E. coli exprimiert und unter Erhalt der Redox-Cofaktoren aufgereinigt. Mit der Identifizierung und Charakterisierung eines intakten Cytochrom bc-Komplexes konnte die Lücke im Verständnis der thermophilen Atmungskette von T. thermophilus geschlossen und die Grundlage für weitere Struktur- und Funktionsanalysen dieses membranintegralen Enzymkomplexes geschaffen werden.
Humane hämatopoetische Stammzellen (HSCs) besitzen die Fähigkeit zur Selbsterneuerung und übernehmen die kontinuierliche Neubildung aller zellulären Bestandteile des Blutes. Aufgrund der zunehmenden klinischen Bedeutung der HSCs ist es essentiell die molekularen Mechanismen, die den Prozess der Vermehrung und Differenzierung von humanen hämatopoetischen Stammzellen steuern, aufzuklären und deren funktionelle Bedeutung zu verstehen. Das Ziel der Arbeit war die Identifizierung, Charakterisierung und gerichtete Modulation funktionell relevanter Signalwege, die am Differenzierungsprozess von HSCs zu myeloiden Effektorzellen beteiligt sind. Für diese Untersuchung wurde ein Expansionsprotokoll für humane HSCs, sowie ein Differenzierungsprotokoll für das humane myeloide DC Differenzierungsmodell entwickelt. In der Arbeit wurden drei wichtige Signalwege der Zelle, die Mitogenen Signalkaskade (MAPK), Protein Kinase C (PKC) gekoppelten Prozessen und dem JAK/STAT Signalweg untersucht. Die vorliegende Arbeit zeigt, daß die Stimulation der HSCs mit GM-CSF und IL-4 zu einer zeitlich begrenzten Aktivierung von MAPK/ERK1/2, PKC delta, JAK2, sowie STAT5 und STAT6 führte. Kommerzielle Inhibitoren von MEK, PKC und Januskinase hemmten selektiv diese Aktivierung und führten zu einer veränderten Hämatopoese. Die Aktivierung dieser Signalwege ist daher für die myeloide Differenzierung von HSCs zu Dendritischen Zellen von entscheidender Bedeutung. Einer der entscheidenden nuklearen Faktoren für die myeloide Differenzierung ist der Ets-Transkriptionsfaktor PU.1, dessen Aktivität durch Phosphorylierung reguliert sein könnte. Obwohl die funktionelle Rolle von PU.1 in der Differenzierung von HSC in der vorliegenden Arbeit nicht vollständig geklärt werden konnte, wurde jedoch erstmals im in vitro Kinase-Assay gezeigt, daß PU.1 durch PKC delta, aber nicht durch MAPK/ERK2 spezifisch phosphoryliert wird. In einem PU.1-spezifischen Luciferasereporter-Assay wurde die transkriptionelle Aktivität von PU.1 durch die Inhibition von PKC delta und MAPK/ERK1/2 deutlich reduziert. Weiterführende Experimente in einem komplexen Differenzierungsmodell von humanen HSCs wiesen darauf hin, daß durch den gezielten Einsatz von Signalweginhibitoren eine Verschiebung der Verhältnisse der gebildeten Blutzellkolonieformen erreicht werden kann. So war die Differenzierung zu Erythrozyten von der Mitogenen Signalkaskade unabhängig, wohingegen die Differenzierung zu Makrophagen eine deutliche Abhängigkeit von der Aktivität der Mitogenen Signalkaskade sowie von der Aktivierung des Protein Kinase C Signalwegs zeigte. Im Gegensatz dazu führte die Inhibition der Januskinasen (JAKs) zu einer Hemmung der Differenzierung in allen Kolonieformen. Insgesamt zeigten die Ergebnisse, daß der MAPK/ERK und PKC delta Signalweg bei der Differenzierung von humanen hämatopoetischen Stammzellen eine wichtige Rolle spielen und eine gerichtete Steuerung der Differenzierung durch den Einsatz spezifischer Signalweginhibitoren möglich erscheint.
Lichtsensitive Proteine bzw. Photorezeptoren eignen sich hervorragend für das Studium des Zusammenhangs von Proteinstruktur und –funktion. Lichtrezeptorproteine werden leicht durch Licht angeregt, wodurch eine gute Zeitauflösung für deren Untersuchung erreicht werden kann. Weiterhin sind sie als Signalproteine während der Etablierung des aktiven Zustandes und dessen Zerfalls großen konformationellen und strukturellen Änderungen unterworfen. Ausgehend von diesen Eigenschaften wurde bereits eine große Zahl von Lichtrezeptorproteinen genauer untersucht. Diese vorliegende Arbeit beschäftigt sich mit lichtinduzierten konformationellen Änderungen in Membranproteinen. Dafür wurden drei verschiedene Systeme herangezogen: das kleine α-helikale Peptid Gramicidin A, der G-Protein gekoppelte Rezeptor Rhodopsin and die BLUF (blue light using FAD) Domäne des hypthetischen Membranproteins Blrp (blue-light regulated phosphodiesterase) aus E. coli. Gramicidin A (gA) ist ein aus dem Bodenbakterium B. brevis isoliertes Antibiotikum, das Transportkanäle für einwertige Kationen wie Lithium, Natrium und Kalium ausbildet. Gelöst in Detergenzmizellen, wurde für gA unerwartet eine Wechselwirkung mit Blaulicht fest gestellt (Abbildung 1). Diese Beobachtung wurde mit statischen und zeitaufgelösten NMRspektroskopischen Methoden genauer untersucht und ist in Kapitel 2 näher beschrieben. Basierend auf den gewonnenen Erkenntnissen wird postuliert, dass einer der Tryptophanreste (Trp9) eine lichtinduzierte konformationelle Änderung erfährt. Ausgehend von der Konformation in Lösung befindet sich die Seitenkette von Trp9 in einem Gleichgewicht (70:30) mit einer zweiten Konformation. Bei der zweiten Konformation handelt es sich möglicherweise um die Orientierung, die der Tryptophanrest unter Festkörper-NMR Bedingungen einnimmt. Die Lebensdauer der neuen Konformation beträgt in etwa eine Sekunde. Der G-Protein gekoppelte Rezeptor Rhodopsin ist verantwortlich für die Verarbeitung von Lichtsignalen in den Stäbchenzellen der Retina. Die Absorption eines einzelnen Photons führt zur Isomerisierung des kovalent gebundenen Chromophors 11-cis-Retinal, wodurch konformationelle Änderungen im Protein veranlasst werden. Der aktivierte Metarhodopsin II (MetaII) Zustand induziert eine Enzymkaskade und schließlich einen Nervenimpuls, das Säugern das Kontrastsehen ermöglicht. Eine große Bandbreite an hochauflösenden NMRspektroskopischen Methoden, (einschließlich zeitaufgelöster und Festkörper-NMR Methoden) wurde im Laufe dieser Arbeit angewandt, um Konformation und Dynamik von bovinem Rhodopsin näher zu untersuchen. In Kapitel 3.1 sind zu Beginn mehrere Optimierungsschritte im Hinblick auf ein kostengünstiges, isotopenmarkiertes Säugerzellenmedium beschrieben. In diesem Zusammenhang wurden mehrere Rhodopsin NMR-Proben hergestellt, wobei der Gehalt an isotopenmarkierten Aminosäuren ca. 50% betrug. Anhand dieser Proben konnte bewiesen werden dass sich mit Lösungs-NMR-Spektroskopie auch sehr große, in Detergenzmizellen stabilisierte Membranproteine (~150 kD Gesamtmasse) detailliert studieren lassen. Die Untersuchungen konzentrierten sich auf den C-Terminus, für den nach sequentieller Zuordnung (Abbildung 2a) und heteronuklearern Relaxationsmessungen ein Mobilitätsverhalten bestimmt wurde, das dem mittelgroßer Proteine ähnelt. Des Weiteren konnten keinerlei definierte Strukturelemente innerhalb des C-Terminus identifiziert werden, u.a. durch einen Vergleich mit eines 19mer Peptids, dessen Primärsequenz des Rhodopsin C-Terminus entspricht (Abbildung 2a und 2b). In Kapitel 3.2 wird die nichtinvasive Zuordnung der Rückgratresonanzen aller fünf Trytophane mit Hilfe einer Kombination aus Lösungs- und Festkörper-NMR beschrieben. Dazu wurden verschiedene Rhodopsinproben hergestellt, die alle möglichen 13C’i-1-Carbonyl/15Ni-Tryptophan isotopenmarkierten Amidpaare enthielten. Eine Teilzuordnung der Tryptophanindolsignale konnte in Lösung durch Protonen-/Deuteriumaustausch und heteronukleare Relaxationsmessungen erreicht werden. Die Ergebnisse legen nahe, dass die Kombination aus Lösungs- und Festkörper-NMR-Spektroskopie sehr gut geeignet ist um komplementäre Informationen zu strukturellen und dynamischen Eigenschaften von Rhodopsin zu liefern. Fehlende Zuordnungen in den Lösungspektren konnten durch den Verglich mit Festkörperspektren ergänzt werden und umgekehrt (Abbildung 3). In Kapitel 3.3 ist die erfolgreiche Adaption der zeitaufgelösten NMR-Spektroskopie für die Untersuchung des Rhodopsin MetaII Zerfalls in vitro beschrieben. Die zeitaufgelösten protonendetektieren NMR-Experimente wurden mit unmarkiertem, in Detergenzmizellen stabilisiertem Protein bei verschiedenen Temperaturen aufgenommen, wobei sich die anschließende Auswertung auf die stark tieffeldverschobene Indolregion konzentrierte (Abbildung 4). Für die berücksichtigten Signale traten nach Induktion des aktivierten Zustandes deutliche chemische Verschiebungsänderungen auf, außerdem zeigten sie unterschiedlich schnellen MetaII Zerfall. Zusätzlich zu der erwarteten Zeitkonstante des MetaII Zerfalls (~6 min bei 298 K) konnte erstmalig eine zweite, ca. zehnmal langsamere Zeitkonstante bestimmt werden. Diese zweite Zeitkonstante ist möglicherweise ein Ausdruck für die langsame Entfaltung von Sekundärstrukturelementen nach dem Zerfall des Proteins in Opsin und Retinal. Die BLUF-Domänen verwenden Flavinadeninnukleotid (FAD) als Chromophor und gehören zu der Familie der Blaulichtrezeptoren. In Kapitel 4 wird die Untersuchung des lichtadaptierten Zustandes der E. coli BLUF Domäne auf Protein- und Ligandenebene mit zeitaufgelösten proton- und phosphordetektierten NMR-Experimenten beschrieben. In Abbildung 5 sind die statischen Licht- und Dunkelspektren (jeweils licht- und dunkeladaptiert) dargestellt. Im Folgenden konnte durch Beobachtung der Dunkeladaption bei verschiedenen Temperaturen die Aktivierungsenergie des Lichtzustandes bestimmt werden. Des Weiteren wurden zum ersten Mal phosphordetektierte NMR-Experimente erfolgreich angewandt, um einen biologisch relevanten Vorgang zeitabhängig näher zu bestimmen.
Zeit ist einer jener Begriffe, für die man die Augustinische Charakterisierung gelten lassen wollte, es sei klar, was sie bedeuten, solange nicht danach gefragt werde (Augustinus Confessiones Lib. XI, 17). Die Frage aber nach dem, was "Zeit" eigentlich ist, erscheint umso berechtigter, als es insbesondere die Naturwissenschaften sind, die für sich in Anspruch nehmen, hier Antworten geben zu können. Die zu erwartenden Antworten wären danach wesentlich empirischer Natur – also direkt oder indirekt experimentell gestützt und mithin Ergebnis dieser Forschung. ...
Der Einsatz von Mikrowellen zur Synthese von Organosilicioumverbindungen ist bislang nicht beschrieben und wird mit der vorliegenden Arbeit eingeführt. Dazu wurde eine Haushaltsmikrowelle durch Öffnen des Sicherheitskäfigs und entsprechender Abschirmung so modifiziert, dass mit den üblichen Labormaterialien gearbeitet werden konnte. Exemplarische Reaktionen in flüssiger Phase, wie die Synthese von Silatranen und silatrananalogen Verbindungen, können gegenüber der klassischen Reaktionsführung bis zum Faktor 60 bei vergleichbaren Ausbeuten und Reinheiten beschleunigt werden. Auch die direkte Konversion von SiO2 in reaktive Verbindungen gelingt unter Mikrowellenbedingungen deutlich beschleunigt. Weitere Modifikationen der Apparatur ermöglichen die Durchführung von Festphasen-Gas Reaktionen unter Verwendung von Silicium und verschiedenen Reaktionsgasen. Verwendet wurden dazu Cl2, HCl, CH3Cl sowie Gemishce dieser Gase. Auch wurden die Reaktionen unter verschiedenen Stufen der Argonverdünnung durchgeführt. Erstaunlicherweise glüht dabei das Silicium innerhalb von Sekunden mit einer Temperatur von über 1000°C. Die Untersuchungen zeigen eine hohe Tendenz zur Bildung von monomeren Siliciumverbindungen, sobald Methylchlorid beteiligt ist, wird bevorzugt das technisch bedeutsame Me2SiCl2 beobachtet. Alle Ergebnisse gehen konform mit der Annahme, dass durche Mikrowelle aktiviertes Silicium bereitgestellt wird. Dadurch kann es zur Bildung und Stabilisierung von intermediären Silylenen kommen, die in verschiedene Bindungen der Reaktionspartner insertieren. Bemerkenswert ist auch die geringe elektrische Leistung von 200 Watt, die in allen diskutierten Umsetzungen ausreicht, um die gewünschten Reaktionen durchzuführen. Darüber hinaus wurde auch der Unterschied zwischen Multimode- und Singlemodegeräten untersucht. Nur bei Verwendung von Multimodegeräten könenn die beschriebenen Ergebnisse erzielt werden. Beim Einsatz von Singlemodegeräten entsprechen die Resultate denen, die bei klassischer thermischer Reaktionsführung erzielt werden.