Refine
Year of publication
Document Type
- Article (31)
- Book (5)
- Part of a Book (2)
- Preprint (2)
- Conference Proceeding (1)
- Part of Periodical (1)
Has Fulltext
- yes (42)
Is part of the Bibliography
- no (42)
Keywords
- Acute myeloid leukemia (4)
- AML (3)
- Begriff (3)
- Metapher (3)
- Bail-out <Wirtschaft> (2)
- Begriffsgeschichte <Fach> (2)
- Chemotherapy (2)
- Diagnostik (2)
- Experimental nuclear physics (2)
- Experimental particle physics (2)
Institute
- Medizin (23)
- Physik (6)
- Frankfurt Institute for Advanced Studies (FIAS) (5)
- Informatik (2)
- Informatik und Mathematik (2)
- ELEMENTS (1)
- Erziehungswissenschaften (1)
- Extern (1)
- Georg-Speyer-Haus (1)
In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of 3He¯¯¯¯¯¯ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as input to calculations of the transparency of our Galaxy to the propagation of 3He¯¯¯¯¯¯ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing 3He¯¯¯¯¯¯ momentum from 25% to 90% for cosmic-ray sources. The results indicate that 3He¯¯¯¯¯¯ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.
Antimatter particles such as positrons and antiprotons abound in the cosmos. Much less common are light antinuclei, composed of antiprotons and antineutrons, which can be produced in our galaxy via high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of the still undiscovered dark-matter particles. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators like the Large Hadron Collider (LHC). Though the properties of elementary antiparticles have been studied in detail, knowledge of the interaction of light antinuclei with matter is rather limited. This work focuses on the determination of the disappearance probability of \ahe\ when it encounters matter particles and annihilates or disintegrates. The material of the ALICE detector at the LHC serves as a target to extract the inelastic cross section for \ahe\ in the momentum range of 1.17≤p<10 GeV/c. This inelastic cross section is measured for the first time and is used as an essential input to calculations of the transparency of our galaxy to the propagation of 3He¯¯¯¯¯¯ stemming from dark-matter decays and cosmic-ray interactions within the interstellar medium. A transparency of about 50% is estimated using the GALPROP program for a specific dark-matter profile and a standard set of propagation parameters. For cosmic-ray sources, the obtained transparency with the same propagation scheme varies with increasing 3He¯¯¯¯¯¯ momentum from 25% to 90%. The absolute uncertainties associated to the 3He¯¯¯¯¯¯ inelastic cross section measurements are of the order of 10%−15%. The reported results indicate that 3He¯¯¯¯¯¯ nuclei can travel long distances in the galaxy, and can be used to study cosmic-ray interactions and dark-matter decays.
In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD)1. These partons subsequently emit further partons in a process that can be described as a parton shower2, which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQ and energy E, within a cone of angular size mQ/E around the emitter3. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques4,5 to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.
Measurements of event-by-event fluctuations of charged-particle multiplicities in Pb–Pb collisions at sNN−−−√ = 2.76 TeV using the ALICE detector at the CERN Large Hadron Collider (LHC) are presented in the pseudorapidity range |η|<0.8 and transverse momentum 0.2<pT<2.0 GeV/c. The amplitude of the fluctuations is expressed in terms of the variance normalized by the mean of the multiplicity distribution. The η and pT dependences of the fluctuations and their evolution with respect to collision centrality are investigated. The multiplicity fluctuations tend to decrease from peripheral to central collisions. The results are compared to those obtained from HIJING and AMPT Monte Carlo event generators as well as to experimental data at lower collision energies. Additionally, the measured multiplicity fluctuations are discussed in the context of the isothermal compressibility of the high-density strongly-interacting system formed in central Pb–Pb collisions.
Introduction: MDRO-colonization has been shown to impair survival in patients with hematological malignancies and solid tumors as well as in patients with liver disease. Despite the increasing spread of multidrug-resistant organisms (MDRO), its impact on patients with hepatocellular carcinoma (HCC) has not been studied. We conducted this retrospective study to analyze the impact of MDRO-colonization on overall prognosis in HCC patients.
Materials and methods: All patients with confirmed HCC diagnosed between January 2008 and December 2017 at the University Hospital Frankfurt were included in this study. HCC patients with a positive MDRO screening before or within the first 90 days after diagnosis of HCC were defined as colonized HCC patients, HCC patients with a negative MDRO screening were defined as noncolonized HCC patients.
Results: 59 (6%) colonized and 895 (94%) noncolonized HCC patients were included. Enterobacterales with extended-spectrum β-lactamase-like phenotype with or without resistance to fluoroquinolones (ESBL/ ± FQ) were the most frequently found MDRO with 59%, followed by vancomycin-resistant Enterococcus faecium with 37%. Colonized HCC patients had more severe cirrhosis and more advanced HCC stage compared to noncolonized HCC patients. Colonized HCC patients showed an impaired survival with a median OS of 189 days (6.3 months) compared to a median OS of 1001 days (33.4 months) in noncolonized HCC patients. MDRO-colonization was identified as an independent risk factor associated with survival in multivariate analysis.
Conclusion: MDRO-colonization is an independent risk factor for survival in patients with HCC highlighting the importance of regular MDRO screening, isolation measures as well as interdisciplinary antibiotic steward-ship programs to guide responsible use of antibiotic agents.
Introduction: The global spread of multidrug-resistant organisms (MDRO) complicates treatment and isolation measures in hospitals and has shown to increase mortality. Patients with disease- or therapy-related immunodeficiency are especially at risk for fatal infections caused by MDRO. The impact of MDRO colonization on the clinical course of AML patients undergoing intensive induction chemotherapy—a potentially curative but highly toxic treatment option—has not been systematically studied.
Materials & methods: 312 AML patients undergoing intensive induction chemotherapy between 2007 and 2015 were examined for MDRO colonization. Patients with evidence for MDRO before or during the hospital stay of induction chemotherapy were defined as colonized, patients who never had a positive swab for MDRO were defined as noncolonized.
Results: Of 312 AML patients 90 were colonized and 130 were noncolonized. Colonized patients suffered from significantly more days with fever, spent more days on the intensive care unit and had a higher median C-reactive protein value during the hospital stay. These findings did not result in a prolonged length of hospital stay or an increased mortality rate for colonized patients. However, in a subgroup analysis, patients colonized with carbapenem-resistant enterobacteriaceae (CRE) had a significantly reduced 60- and 90-day, as well as 1- and 2-year survival rates when compared to noncolonized patients.
Conclusion: Our analysis highlights the importance of intensive MDRO screening especially in patients with febrile neutropenia since persisting fever can be a sign of MDRO-colonization. CRE-colonized patients require special surveillance, since they seem to be at risk for death.
The optimal follow-up care for relapse detection in acute myeloid leukemia (AML) patients in first remission after consolidation therapy with intensive chemotherapy is not established. In this retrospective study, we evaluate the diagnostic value of an intensive relapse surveillance strategy by regular bone marrow aspirations (BMA) in these patients. We identified 86 patients with newly diagnosed non-promyelocytic AML who had reached complete remission (CR) after intensive induction and consolidation chemotherapy between 2007 and 2019. Annual relapse rates were 40%, 17%, and 2% in years 1–3, respectively. Patients in CR were surveilled by BMA scheduled every 3 months for 2 years, followed by BMA every 6 months. This surveillance regimen detected 29 of 55 relapses (53%), 11 of which were molecular relapses (20%). The remaining 26 of 55 relapses (47%) were diagnosed by non-surveillance BMA prompted by specific suspicion of relapse. Most patients showed concurrent morphological abnormalities in peripheral blood (PB) at time of relapse. Seven percent of all morphological relapses occurred without simultaneous PB abnormalities and would have been delayed without surveillance BMA. Intensified monthly PB assessment paired with BMA every 3 months during the first 2 years may be a highly sensitive relapse surveillance strategy.