Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Macrotermes (3)
- biodiversity (2)
- habitat heterogeneity (2)
- termitaria (2)
- Afrique de l'Ouest (1)
- Pendjari National Park (1)
- Savanne (1)
- Termitenbiologie (1)
- Termitenhügel (1)
- Vegetationsmuster (1)
Termites are important ecosystem engineers of the savanna biome, with the large mounds of fungus-cultivating termites being sources of habitat heterogeneity and structural complexity in African savanna landscapes. Studies from different localities throughout Africa have shown that termite mounds have a strong influence of diversity and composition of plant communities. However, most research has been conducted only at the local scale, and integrating knowledge across Africa is hampered by different methodology of studies and differing environmental context. Little is known about the variation in vegetation composition on termite mounds compared to the surrounding savanna at the regional scale and at the landscape scale, and the main determinants of plant communities on mounds are yet to be ascertained.
This thesis aimes at better understanding the influence of termite mounds on vegetation compared to the surrounding savanna across spatial scales. Three research projects analyse vegetation data and soil data from paired mound and savanna plots in West Africa. The first project examines the influence of termite-induced heterogeneity on plant diversity and vegetation composition at a regional scale, following a bioclimatic gradient from the Sahel of Burkina Faso to the Sudanian vegetation zone in North Benin. The second Project analysed variation of vegetation on and off mounds at the landscape scale in Pendjari National Park, North Benin. The third is a monitoring study over the course of two years, exploring dynamics of juvenile woody plant communities on mounds and in the surrounding savanna at a local scale. The thesis thus provides the first comparative quantitative analysis across scales of mound and savanna vegetation and the drivers of the mound–savanna difference in vegetation.
Synthesizing across scales, its results confirm that termite mounds strongly contribute to savanna plant diversity, even though mounds are not generally more species rich than the surrounding savanna. Variation in mound vegetation is much higher along climatic and soil gradients than previously acknowledged. Mound vegetation differs from the surrounding savanna in the whole study area and in each sampled savanna type, with the strongest differences occurring at the most humid study sites. A large proportion of the differences between mound and savanna vegetation is explained by clay enrichment and related soil factors, such as cation concentrations. Plants on mounds thus benefit from favourable soil conditions, including higher fertility and higher water availability, which is also mirrored by the higher abundance and basal area of juvenile woody plants found on mounds. The variation in mound vegetation between study sites across scales results in part from local differences in soil composition and from climatic differences that influence the regional distribution of species. Different sets of characteristic mound species are identified in each project. Specific plant families and traits like succulency, lianescence, and adaptations to zoochory are found to be overrepresented in mound communities.
In addition to the findings in this thesis, remaining parts of the variation in mound vegetation between study sites could likely be explained by investigating further factors. Specifically, mound vegetation depends on habitat context, which includes available species pools, spatial distribution of mounds, biotic interactions with dispersers and herbivores, fire, and also anthropogenic influence. The high proportion of species with adaptations to zoochory found on mounds, for example, indicates that animal dispersers should be of particular importance for vegetation on termite mounds. Herbivory and fire regime, which are known to contribute to the diversity and community composition of the mound–savanna system, also show strong local variation, not least because of anthropogenic influence.
In conclusion, termite mounds play a crucial role in maintaining heterogeneity and plant diversity in the savanna across scales. Ecosystem services provided by termites, especially considering long-term effects on soil fertility and ecosystem resilience, are most likely undervalued. Mounds should be considered in management plans from local to regional, transnational scales as a matter of course, accompanied by further research on the role of termite mounds in savanna ecology on a longer temporal scale. The research presented here thus provides a basis for future studies on termite mound vegetation that should specifically consider the biotic and abiotic context of the mound–savanna system.
Dynamics of juvenile woody plant communities on termite mounds in a West African savanna landscape
(2014)
Termites are keystone species in savanna ecology, and their mounds are thought to be an important source of habitat heterogeneity and structural complexity of the savanna. Macrotermes termitaria have been shown to allow woody plant colonisation of landscapes otherwise dominated by C4 grasses. In this study, we assess how resource-rich Macrotermes mounds affect juvenile woody plant and non-woody plant species diversity, community composition, biomass and population dynamics. We repeatedly sampled paired termite mound and savanna plots in Pendjari National Park (Sudanian vegetation zone, North Benin, West Africa) over the course of two years. Despite considerable overlap in their species pools, plant communities of mound and savanna plots were clearly separated in ordinations. Species richness and diversity of juvenile woody plants was consistently higher on termite mounds, while no differences could be detected for non-woody plants. Evenness of juvenile woody plants was generally lower on mounds, whereas density and basal area were higher on mounds. In contrast, we did not detect any influence of the mound microhabitat on colonisation, mortality and turnover of woody juveniles. Therefore, we suggest that differences in the communities on and off mounds should be strongly influenced by directed diaspore dispersal through zoochory.
Termite mounds represent abundant microhabitats of high biodiversity in tropical savanna ecosystems and are an important source of landscape heterogeneity in Sub–Saharan West Africa. Floristic composition as well as density, structure and zonation of plant cover on the mounds were investigated in northern Benin and compared to the adjacent savanna vegetation. A total of 57 abandoned and densely vegetated termite mounds of comparable size and similarly affected by erosion located in different types of savannas inside and outside of the W National Park and in cotton fields were studied. This study revealed that termitaria are special habitats differing in density, composition and structure from surrounding savannas. The plant cover of termite mounds showed a distinctive zonation. Succulents, geophytes, and lianas were much more abundant on mounds, the family Capparaceae was found exclusively on mounds. The floristic composition and vegetation on termitaria proved to be rather homogeneous; although those mounds located in cotton fields differed by higher abundance of Poaceae and lower species richness.
Particularly in savannas, termites are ecosystem engineers and a keystone group in ecology. For the understanding of the savanna vegetation, mound building termites are of particular interest. Due to their special soil chemistry and physical structure, termite mounds often host other plants than the surrounding savanna. As our knowledge of the specific contribution of mound-building termites to overall savanna diversity and ecosystem dynamics doubtlessly is not complete, this paper summarises the state of the art in order to stimulate further research. According to the research interest of the authors, focus is laid on the West African savanna and on the genus Macrotermes.