Refine
Year of publication
Document Type
- Article (26)
Has Fulltext
- yes (26)
Is part of the Bibliography
- no (26)
Keywords
- Biodiversität (2)
- Malpighiales (2)
- West Africa (2)
- phylogenomics (2)
- species richness (2)
- Artificial Intelligence (1)
- Biodiversity Data (1)
- Biomonitoring (1)
- Bodenkrusten (1)
- Botanical Collections (1)
Background: The West African country of Burkina Faso (BFA) is an example for the enduring importance of traditional plant use today. A large proportion of its 17 million inhabitants lives in rural communities and strongly depends on local plant products for their livelihood. However, literature on traditional plant use is still scarce and a comprehensive analysis for the country is still missing.
Methods: In this study we combine the information of a recently published plant checklist with information from ethnobotanical literature for a comprehensive, national scale analysis of plant use in Burkina Faso. We quantify the application of plant species in 10 different use categories, evaluate plant use on a plant family level and use the relative importance index to rank all species in the country according to their usefulness. We focus on traditional medicine and quantify the use of plants as remedy against 22 classes of health disorders, evaluate plant use in traditional medicine on the level of plant families and rank all species used in traditional medicine according to their respective usefulness.
Results: A total of 1033 species (50%) in Burkina Faso had a documented use. Traditional medicine, human nutrition and animal fodder were the most important use categories. The 12 most common plant families in BFA differed considerably in their usefulness and application. Fabaceae, Poaceae and Malvaceae were the plant families with the most used species. In this study Khaya senegalensis, Adansonia digitata and Diospyros mespiliformis were ranked the top useful plants in BFA. Infections/Infestations, digestive system disorders and genitourinary disorders are the health problems most commonly addressed with medicinal plants. Fabaceae, Poaceae, Asteraceae, Apocynaceae, Malvaceae and Rubiaceae were the most important plant families in traditional medicine. Tamarindus indica, Vitellaria paradoxa and Adansonia digitata were ranked the most important medicinal plants.
Conclusions: The national-scale analysis revealed systematic patterns of traditional plant use throughout BFA. These results are of interest for applied research, as a detailed knowledge of traditional plant use can a) help to communicate conservation needs and b) facilitate future research on drug screening.
Aim: To provide distribution information and preliminary conservation assessments for all species of the pineapple family (Bromeliaceae), one of the most diverse and ecologically important plant groups of the American tropics—a global biodiversity hotspot. Furthermore, we aim to analyse patterns of diversity, endemism and the conservation status of the Bromeliaceae on the continental level in the light of their evolutionary history.
Location: The Americas.
Methods: We compiled a dataset of occurrence records for 3,272 bromeliad species (93.4% of the family) and modelled their geographic distribution using either climate‐based species distribution models, convex hulls or geographic buffers dependent on the number of occurrences available. We then combined this data with information on taxonomy and used the ConR software for a preliminary assessment of the conservation status of all species following Criterion B of the International Union for the Conservation of Nature (IUCN).
Results: Our results stress the Atlantic Forest in eastern Brazil, the Andean slopes, Central America and the Guiana Highlands as centres of bromeliad diversity and endemism. Phylogenetically ancient subfamilies of bromeliads are centred in the Guiana highlands whereas the large radiations of the group spread across different habitats and large geographic area. A total of 81% of the evaluated bromeliad species are Possibly Threatened with extinction. We provide range polygons for 3,272 species, as well as newly georeferenced point localities for 911 species in the novel “bromeliad” r package, together with functions to generate diversity maps for individual taxonomic or functional groups.
Main conclusions: Diversity centres of the Bromeliaceae agreed with macroecological patterns of other plant and animal groups, but show some particular patterns related to the evolutionary origin of the family, especially ancient dispersal corridors. A staggering 2/3rds of Bromeliaceae species might be threatened with extinction, especially so in tropical rain forests, raising concerns about the conservation of the family and bromeliad‐dependent animal species.
Ohne das Eingreifen des Menschen wäre Mitteleuropa fast ein reines Waldgebiet. Noch heute beheimaten die Wälder eine große Vielfalt an Pflanzen und Tieren, die für diese Region spezifisch sind. Regionale Besonderheiten gehen aber verloren, je mehr Menschen in die Ökosysteme eingreifen: So unterscheiden sich die Pflanzenarten auf der North Charles Street in Baltimore nur wenig von denjenigen der Mainzer Landstraße in Frankfurt. Gleichzeitig verdrängen zugewanderte und eingeschleppte Arten heimische Tiere und Pflanzen. Allerdings gibt es auch im Frankfurter Stadtgebiet echte Horte der Biodiversität.
The year 1989 represents the starting point of the cooperation between botanists of the Goethe-University in Frankfurt (Germany) and of the University of Ouagadougou (Burkina Faso). Some years later, the University of Abomey-Calavi (Benin) joined the cooperation. This paper gives an overview on joint projects, resulting publications and theses, and on other achievements of this fruitful cooperation, which meanwhile also comprises partners of Ivory Coast, Niger and Senegal.
Die Vorkommen der anthropochoren Aster-Arten im Stadtgebiet von Frankfurt am Main (Symphyotrichum lanceolatum, S. novae-angliae, S. novi-belgii, S. parviflorum, S. salignum) wurden kartiert und historische Dokumente zur Rekonstruktion der Einwanderung ausgewertet. Aktuell konnten 39 Fundorte im Stadtgebiet dokumentiert werden, am häufigsten ist S. lanceolatum. 40 Merkmale wurden untersucht und vermessen, um ihre taxonomische Relevanz zu beurteilen. Als hilfreich zur Unterscheidung der Arten erwiesen sich vor allem verschiedene Merkmale der Hüllblätter. Mit Ausnahme von S. novae-angliae sind die Arten aber morphologisch kaum zu unterscheiden und durch viele Übergänge verbunden. Vergleichsweise gut voneinander abgrenzbar sind die beiden Aggregate von S. novi-belgii (S. salignum, S. novi-belgii) und S. lanceo-latum (S. lanceolatum, S. parviflorum).
Background: The angiosperm family Bromeliaceae comprises over 3.500 species characterized by exceptionally high morphological and ecological diversity, but a very low genetic variation. In many genera, plants are vegetatively very similar which makes determination of non flowering bromeliads difficult. This is particularly problematic with living collections where plants are often cultivated over decades without flowering. DNA barcoding is therefore a very promising approach to provide reliable and convenient assistance in species determination. However, the observed low genetic variation of canonical barcoding markers in bromeliads causes problems.
Result. In this study the low-copy nuclear gene Agt1 is identified as a novel DNA barcoding marker suitable for molecular identification of closely related bromeliad species. Combining a comparatively slowly evolving exon sequence with an adjacent, genetically highly variable intron, correctly matching MegaBLAST based species identification rate was found to be approximately double the highest rate yet reported for bromeliads using other barcode markers.
Conclusion. In the present work, we characterize Agt1 as a novel plant DNA barcoding marker to be used for barcoding of bromeliads, a plant group with low genetic variation. Moreover, we provide a comprehensive marker sequence dataset for further use in the bromeliad research community.
Correction to: The low-copy nuclear gene Agt1 as a novel DNA barcoding marker for Bromeliaceae
(2020)
Correction to: BMC Plant Biol 20, 111 (2020)
https://doi.org/10.1186/s12870-020-2326-5
In the original publication [1] an incorrect version of Additional file 1 was used during typesetting. The incorrect and correct versions of Additional file 1 are available in this correction article. The original article has been updated. The publisher apologizes to the authors and readers for the inconvenience.
The subfamily Bromelioideae is one of the most diverse groups among the neotropical Bromeliaceae. Previously, key innovations have been identified which account for the extraordinary radiation and species richness of this subfamily, especially in the so-called core Bromelioideae. However, in order to extend our understanding of the evolutionary mechanisms, the genomic mechanisms (e.g. polyploidy, dysploidy) that potentially underlie this accelerated speciation also need to be tested. Here, using PI and DAPI staining and flow cytometry we estimated genome size and GC content of 231 plants covering 30 genera and 165 species and combined it with published data. The evolutionary and ecological significance of all three genomic characters was tested within a previously generated dated phylogenetic framework using ancestral state reconstructions, comparative phylogenetic methods, and multiple regressions with climatic variables. The absolute genome size (2C) of Bromelioideae varied between 0.59 and 4.11 pg, and the GC content ranged between 36.73 and 41.43%. The monoploid genome sizes (Cx) differed significantly between core and early diverging lineages. The occurrence of dysploidy and polyploidy was, with few exceptions, limited to the phylogenetically isolated early diverging tank-less lineages. For Cx and GC content Ornstein–Uhlenbeck models outperformed the Brownian motion models suggesting adaptive potential linked to the temperature conditions. 2C-values revealed different rates of evolution in core and early diverging lineages also related to climatic conditions. Our results suggest that polyploidy is not associated with higher net diversification and fast radiation in core bromelioids. On the other hand, although coupled with higher extinction rates, dysploidy, polyploidy, and resulting genomic reorganizations might have played a role in the survival of the early diverging bromelioids in hot and arid environments.
Hexaploides Chenopodium album ist in Frankfurt am Main (Hessen) häufig. Die Pflanzen unterscheiden sich deutlich in Blütezeit, Höhe, Verzweigung, Blattform und Blütenstandsmorphologie, wobei oft morphologisch einheitliche Pflanzen benachbart wachsen. Die Merkmale variieren unabhängig voneinander und es erscheint nicht sinnvoll, morphologische Gruppen taxonomisch zu fassen.