Refine
Year of publication
Document Type
- Article (21)
- Contribution to a Periodical (1)
- Preprint (1)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- Birds (2)
- Community ecology (2)
- Ecological networks (2)
- functional traits (2)
- land use (2)
- Biodiversity (1)
- Biodiversity conservation (1)
- Bird physiology (1)
- Climate-change ecology (1)
- Colombian Andes (1)
Nature benefits human health. To date, however, little is known whether biodiversity relates to human health. While some local and city level studies show that species diversity, as a measure of biodiversity, can have positive effects, there is a lack of studies about the relationship between different species diversity measures and human health, especially at larger spatial scales. Here, we conduct cross-sectional analyses of the association between species diversity and human health across Germany, while controlling for socio-economic factors and other nature characteristics. As indicators for human health, we use the mental (MCS) and physical health (PCS) component scales of the German Socio-Economic Panel (SOEP, Short Form Health Questionnaire – SF12). For species diversity, we use species richness and abundance estimates of two species groups: plants and birds. We phrase the following hypotheses: plant and bird species are positively associated with mental and physical health (H1 & H3); bird abundance is positively related to mental health (H2). Our results demonstrate a significant positive relationship between plant and bird species richness and mental health across all model variations controlling for a multitude of other factors. These results highlight the importance for species diversity for people’s mental health and well-being. Therefore, policy makers, landscape planners and greenspace managers on the local and national level should consider supporting biodiverse environments to promote mental health and wellbeing. For this purpose, we propose to use species diversity measures as indicators for salutogenic (health promoting) characteristics of nature, landscape and urban green space.
Climate change indicators are tools to assess, visualize and communicate the impacts of climate change on species and communities. Indicators that can be applied to different taxa are particularly useful because they allow comparative analysis to identify which kinds of species are being more affected. A general prediction, supported by empirical data, is that the abundance of warm-adapted species should increase over time, relative to the cool-adapted ones within communities, under increasing ambient temperatures. The community temperature index (CTI) is a community weighted mean of species’ temperature preferences and has been used as an indicator to summarize this temporal shift. The CTI has the advantages of being a simple and generalizable indicator; however, a core problem is that temporal trends in the CTI may not only reflect changes in temperature. This is because species’ temperature preferences often covary with other species attributes, and these other attributes may affect species response to other environmental drivers. Here, we propose a novel model-based approach that separates the effects of temperature preference from the effects of other species attributes on species’ abundances and subsequently on the CTI. Using long-term population data of breeding birds in Denmark and demersal marine fish in the southeastern North Sea, we find differences in CTI trends with the original approach and our model-based approach, which may affect interpretation of climate change impacts. We suggest that our method can be used to test the robustness of CTI trends to the possible effects of other drivers of change, apart from climate change.
The effect-response framework states that plant functional traits link the abiotic environment to ecosystem functioning. One ecosystem property is the body size of the animals living in the system, which is assumed to depend on temperature or resource availability, among others. For primary consumers, resource availability may directly be related to plant traits, while for secondary consumers the relationship is indirect. We used plant traits to describe resource availability along an elevational gradient on Mount Kilimanjaro, Tanzania. Using structural equation models, we determined the response of plant traits to changes in precipitation, temperature and disturbance with and assessed whether abiotic conditions or community-weighted means of plant traits are stronger predictors of the mean size of bees, moths, frugivorous birds, and insectivorous birds. Traits indicating tissue density and nutrient content strongly responded to variations in precipitation, temperature and disturbance. They had direct effects on pollination and fruit traits. However, the average body sizes of the animal groups considered could only be explained by temperature and habitat structure, not by plant traits. Our results demonstrate a strong link between traits and the abiotic environment, but suggest that temperature is the most relevant predictor of mean animal body size. Community-weighted means of plant traits and body sizes appear unsuitable to capture the complexity of plant-animal interactions.
Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among species, and the capacity of species to utilize these gradients under climate change.
Aim: The identification of the mechanisms determining spatial variation in biological diversity along elevational gradients is a central objective in ecology and biogeography. Here, we disentangle the direct and indirect effects of abiotic drivers (climatic conditions, and land use) and biotic drivers (vegetation structure and food resources) on functional diversity and composition of bird and bat assemblages along a tropical elevational gradient. Location: Southern slopes of Mt. Kilimanjaro, Tanzania, East Africa. Methods: We counted birds and recorded bat sonotypes on 58 plots distributed in near-natural and anthropogenically modified habitats from 700 to 4,600 m above sea level. For the recorded taxa, we compiled functional traits related to movement, foraging and body size from museum specimens and databases. Further, we recorded mean annual temperature, precipitation, vegetation complexity as well as the number of fruits, flowers, and insect biomass as measures of resource availability on each study site. Results: Using path analyses, we found similar responses of bird and bat functional diversity to the variation in abiotic and biotic drivers along the elevational gradient. In contrast, the functional composition of both taxa showed distinct responses to abiotic and biotic drivers. For both groups, direct temperature effects were most important, followed by resource availability, precipitation and vegetation complexity. Main Conclusions: Our findings indicate that physiological and metabolic constraints imposed by temperature and resource availability determine the functional diversity of bird and bat assemblages, whereas the composition of individual functional traits is driven by taxon-specific processes. Our study illustrates that distinct filtering mechanisms can result in similar patterns of functional diversity along broad environmental gradients. Such differences need to be taken into account when it comes to conserving the functional diversity of flying vertebrates on tropical mountains.
Nature's non-material contributions to people are difficult to quantify and one aspect in particular, nature's contributions to communication (NCC), has so far been neglected. Recent advances in automated language processing tools enable us to quantify diversity patterns underlying the distribution of plant and animal taxon labels in creative literature, which we term BiL (biodiversity in literature). We assume BiL to provide a proxy for people's openness to nature's non-material contributions enhancing our understanding of NCC. We assembled a comprehensive list of 240,000 English biological taxon labels. We pre-processed and searched a subcorpus of digitised literature on Project Gutenberg for these labels. We quantified changes in biodiversity indices commonly used in ecological studies for 16,000 books, encompassing 4,000 authors, as proxies for BiL between 1705 and 1969. We observed hump-shape patterns for taxon label richness, abundance and Shannon diversity indicating a peak of BiL in the middle of the 19th century. This is also true for the ratio of biological to general lexical richness. The variation in label use between different sections within books, quantified as β-diversity, declined until the 1830s and recovered little, indicating a less specialised use of taxon labels over time. This pattern corroborates our hypothesis that before the onset of industrialisation BiL may have increased, reflecting several concomitant influences such as the general broadening of literary content, improved education and possibly an intensified awareness of the starting loss of biodiversity during the period of romanticism. Given that these positive trends continued and that we do not find support for alternative processes reducing BiL, such as language streamlining, we suggest that this pronounced trend reversal and subsequent decline of BiL over more than 100 years may be the consequence of humans’ increasing alienation from nature owing to major societal changes in the wake of industrialisation. We conclude that our computational approach of analysing literary communication using biodiversity indices has a high potential for understanding aspects of non-material contributions of biodiversity to people. Our approach can be applied to other corpora and would benefit from additional metadata on taxa, works and authors.
Southern African protected areas (PAs) harbour a great diversity of animals, which represent a large potential for wildlife tourism. In this region, global change is expected to result in vegetation changes, such as bush encroachment and increases in vegetation density. However, little is known on the influence of vegetation structure on wildlife tourists’ wildlife viewing experience and satisfaction. In this study, we collected data on vegetation structure and perceived mammal densities along 196 road transects (each 5 km long) and conducted a social survey with 651 questionnaires across four PAs in three Southern African countries. Our objectives were 1) to assess visitors’ attitude towards vegetation, 2) to test the influence of perceived mammal density and vegetation structure on the easiness to spot animals, and 3) on visitors’ satisfaction during their visit to PAs. Using a Boosted Regression Tree procedure, we found mostly negative non-linear relationships between vegetation density and wildlife tourists’ experience, and positive relationships between perceived mammal densities and wildlife tourists’ experience. In particular, wildlife tourists disliked road transects with high estimates of vegetation density. Similarly, the easiness to spot animals dropped at thresholds of high vegetation density and at perceived mammal densities lower than 46 individuals per road transect. Finally, tourists’ satisfaction declined linearly with vegetation density and dropped at mammal densities smaller than 26 individuals per transect. Our results suggest that vegetation density has important impacts on tourists’ wildlife viewing experience and satisfaction. Hence, the management of PAs in savannah landscapes should consider how tourists perceive these landscapes and their mammal diversity in order to maintain and develop a sustainable wildlife tourism.
A tale of two seasons: The link between seasonal migration and climatic niches in passerine birds
(2020)
The question of whether migratory birds track a specific climatic niche by seasonal movements has important implications for understanding the evolution of migration, the factors affecting species' distributions, and the responses of migrants to climate change. Despite much research, previous studies of bird migration have produced mixed results. However, whether migrants track climate is only one half of the question, the other being why residents remain in the same geographic range year-round. We provide a literature overview and test the hypothesis of seasonal niche tracking by evaluating seasonal climatic niche overlap across 437 migratory and resident species from eight clades of passerine birds. Seasonal climatic niches were based on a new global dataset of breeding and nonbreeding ranges. Overlap between climatic niches was quantified using ordination methods. We compared niche overlap of migratory species to two null expectations, (a) a scenario in which they do not migrate and (b) in comparison with the overlap experienced by closely related resident species, while controlling for breeding location and range size. Partly in accordance with the hypothesis of niche tracking, we found that the overlap of breeding versus nonbreeding climatic conditions in migratory species was greater than the overlap they would experience if they did not migrate. However, this was only true for migrants breeding outside the tropics and only relative to the overlap species would experience if they stayed in the breeding range year-round. In contrast to the hypothesis of niche tracking, migratory species experienced lower seasonal climatic niche overlap than resident species, with significant differences between tropical and nontropical species. Our study suggests that in seasonal nontropical environments migration away from the breeding range may serve to avoid seasonally harsh climate; however, different factors may drive seasonal movements in the climatically more stable tropical regions.
Climatic niches describe the climatic conditions in which species can persist. Shifts in climatic niches have been observed to coincide with major climatic change, suggesting that species adapt to new conditions. We test the relationship between rates of climatic niche evolution and paleoclimatic conditions through time for 65 Old-World flycatcher species (Aves: Muscicapidae). We combine niche quantification for all species with dated phylogenies to infer past changes in the rates of niche evolution for temperature and precipitation niches. Paleoclimatic conditions were inferred independently using two datasets: a paleoelevation reconstruction and the mammal fossil record. We find changes in climatic niches through time, but no or weak support for a relationship between niche evolution rates and rates of paleoclimatic change for both temperature and precipitation niche and for both reconstruction methods. In contrast, the inferred relationship between climatic conditions and niche evolution rates depends on paleoclimatic reconstruction method: rates of temperature niche evolution are significantly negatively related to absolute temperatures inferred using the paleoelevation model but not those reconstructed from the fossil record. We suggest that paleoclimatic change might be a weak driver of climatic niche evolution in birds and highlight the need for greater integration of different paleoclimate reconstructions.
Species’ functional traits set the blueprint for pair-wise interactions in ecological networks. Yet, it is unknown to what extent the functional diversity of plant and animal communities controls network assembly along environmental gradients in real-world ecosystems. Here we address this question with a unique dataset of mutualistic bird–fruit, bird–flower and insect–flower interaction networks and associated functional traits of 200 plant and 282 animal species sampled along broad climate and land-use gradients on Mt. Kilimanjaro. We show that plant functional diversity is mainly limited by precipitation, while animal functional diversity is primarily limited by temperature. Furthermore, shifts in plant and animal functional diversity along the elevational gradient control the niche breadth and partitioning of the respective other trophic level. These findings reveal that climatic constraints on the functional diversity of either plants or animals determine the relative importance of bottom-up and top-down control in plant–animal interaction networks.