Refine
Year of publication
Document Type
- Article (15)
- Preprint (4)
- Part of a Book (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Polymers (2)
- ATR-FTIR (1)
- Abundance (1)
- Advanced stage (1)
- Autecology (1)
- COVID-19 (1)
- Chemistry (1)
- Cold hardiness (1)
- Cold tolerance (1)
- Comorbidity (1)
Aquatic ecosystems are globally contaminated with microplastics (MP). However, comparative data on MP levels in freshwater systems is still scarce. Therefore, the aim of this study is to quantify MP abundance in water and sediment of the German river Elbe using visual, spectroscopic (Fourier-transform infrared spectroscopy) and thermo analytical (pyrolysis gas chromatography mass spectrometry) methods. Samples from eleven German sites along the German part of the Elbe were collected, both in the water and sediment phase, in order to better understand MP sinks and transport mechanisms. MP concentrations differed between the water and sediment phase. Sediment concentrations (mean: 3,350,000 particles m−3, 125–5000 μm MP) were in average 600,000-fold higher than water concentrations (mean: 5.57 particles m−3, 150–5000 μm MP). The abundance varied between the sampling sites: In sediments, the abundance decreased in the course of the river while in water samples no such clear trend was observed. This may be explained by a barrage retaining sediments and limiting tidal influence in the upstream parts of the river. Particle shape differed site-specifically with one site having exceptionally high quantities of spheres, most probably due to industrial emissions of PS-DVB resin beads. Suspended MP consisted predominantly of polyethylene and polypropylene whereas sediments contained a higher diversity of polymer types. Determined MP concentrations correspond well to previous results from other European rivers. In a global context, MP levels in the Elbe relate to the lower (water) to middle section (sediment) of the global range of MP concentrations determined for rivers worldwide. This highlights that elevated MP levels are not only found in single countries or continents, but that MP pollution is an issue of global concern.
Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J/psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.
Feeding type and development drive the ingestion of microplastics by freshwater invertebrates
(2017)
Microscopic plastic items (microplastics) are ubiquitously present in aquatic ecosystems. With decreasing size their availability and potential to accumulate throughout food webs increase. However, little is known on the uptake of microplastics by freshwater invertebrates. To address this, we exposed species with different feeding strategies to 1, 10 and 90 µm fluorescent polystyrene spheres (3–3 000 particles mL−1). Additionally, we investigated how developmental stages and a co-exposure to natural particles (e.g., food) modulate microplastic ingestion. All species ingested microplastics in a concentration-dependent manner with Daphnia magna consuming up to 6 180 particles h−1, followed by Chironomus riparius (226 particles h−1), Physella acuta (118 particles h−1), Gammarus pulex (10 particles h−1) and Lumbriculus variegatus (8 particles h−1). D. magna did not ingest 90 µm microplastics whereas the other species preferred larger microplastics over 1 µm in size. In C. riparius and D. magna, size preference depended on the life stage with larger specimens ingesting more and larger microplastics. The presence of natural particles generally reduced the microplastics uptake. Our results demonstrate that freshwater invertebrates have the capacity to ingest microplastics. However, the quantity of uptake depends on their feeding type and morphology as well as on the availability of microplastics.
Remote sensing data are essential for monitoring the Earth’s surface waters, especially since the amount of publicly available in-situ data is declining. Satellite altimetry provides valuable information on the water levels and variations of lakes, reservoirs and rivers. In combination with satellite imagery, the derived time series allow the monitoring of lake storage changes and river discharge. However, satellite altimetry is limited in terms of its spatial resolution due to its measurement geometry, only providing information in the nadir direction beneath the satellite’s orbit. In a case study in the Mississippi River Basin (MRB), this study investigates the potential and limitations of past and current satellite missions for the monitoring of basin-wide storage changes. For that purpose, an automated target detection is developed and the extracted lake surfaces are merged with the satellites’ tracks. This reveals that the current altimeter configuration misses about 80% of all lakes larger than 0.1 km2 in the MRB and 20% of lakes larger than 10 km2, corresponding to 30% and 7% of the total water area, respectively. Past altimetry configurations perform even more poorly. From the larger water bodies represented by a global hydrology model, at least 91% of targets and 98% of storage changes are captured by the current altimeter configuration. This will improve significantly with the launch of the planned Surface Water and Ocean Topography (SWOT) mission.
Background: While the use of plastic materials has generated huge societal benefits, the "plastic age" comes with downsides: One issue of emerging concern is the accumulation of plastics in the aquatic environment. Here, so-called microplastics (MP), fragments smaller than 5 mm, are of special concern because they can be ingested throughout the food web more readily than larger particles. Focusing on freshwater MP, we briefly review the state of the science to identify gaps of knowledge and deduce research needs.
State of the science: Environmental scientists started investigating marine (micro)plastics in the early 2000s. Today, a wealth of studies demonstrates that MP have ubiquitously permeated the marine ecosystem, including the polar regions and the deep sea. MP ingestion has been documented for an increasing number of marine species. However, to date, only few studies investigate their biological effects. The majority of marine plastics are considered to originate from land-based sources, including surface waters. Although they may be important transport pathways of MP, data from freshwater ecosystems is scarce. So far, only few studies provide evidence for the presence of MP in rivers and lakes. Data on MP uptake by freshwater invertebrates and fish is very limited.
Knowledge gaps: While the research on marine MP is more advanced, there are immense gaps of knowledge regarding freshwater MP. Data on their abundance is fragmentary for large and absent for small surface waters. Likewise, relevant sources and the environmental fate remain to be investigated. Data on the biological effects of MP in freshwater species is completely lacking. The accumulation of other freshwater contaminants on MP is of special interest because ingestion might increase the chemical exposure. Again, data is unavailable on this important issue.
Conclusions: MP represent freshwater contaminants of emerging concern. However, to assess the environmental risk associated with MP, comprehensive data on their abundance, fate, sources, and biological effects in freshwater ecosystems are needed. Establishing such data critically depends on a collaborative effort by environmental scientists from diverse disciplines (chemistry, hydrology, ecotoxicology, etc.) and, unsurprisingly, on the allocation of sufficient public funding.
Background:Aedes aegypti is a potential vector for several arboviruses including dengue and Zika viruses. The species seems to be restricted to subtropical/tropical habitats and has difficulties in establishing permanent populations in southern Europe, probably due to constraints during the winter season. The aim of this study was to systematically analyze the cold tolerance (CT) of Ae. aegypti in its most cold-resistant life stage, the eggs.
Methods: The CT of Ae. aegypti eggs was compared with that of Ae. albopictus which is well established in large parts of Europe. By systematically studying the literature (meta-analysis), we recognized that CT has been rarely tested in Ae. aegypti eggs, but eggs can survive at zero and sub-zero temperatures for certain exposure periods. To overcome potential bias from experimental differences between studies, we then conducted species comparisons using a harmonized high-resolution CT measuring method. From subtropical populations of the same origin, the survival (hatching in %) and emergence of adults of both species were measured after zero and sub-zero temperature exposures for up to 9 days (3 °C, 0 °C and − 2 °C: ≤ 9 days; − 6 °C: ≤ 2 days).
Results: Our data show that Ae. aegypti eggs can survive low and sub-zero temperatures for a short time period similar to or even better than those of Ae. albopictus. Moreover, after short sub-zero exposures of eggs of both species, individuals still developed into viable adults (Ae. aegypti: 3 adults emerged after 6 days at − 2 °C, Ae. albopictus: 1 adult emerged after 1 day at − 6 °C).
Conclusions: Thus, both the literature and the present experimental data indicate that a cold winter may not be the preventing factor for the re-establishment of the dengue vector Ae. aegypti in southern Europe.
Multimorbidity is a health issue mostly dealt with in primary care practice. As a result of their generalist and patient-centered approach, long-lasting relationships with patients, and responsibility for continuity and coordination of care, family physicians are particularly well placed to manage patients with multimorbidity. However, conflicts arising from the application of multiple disease oriented guidelines and the burden of diseases and treatments often make consultations challenging. To provide orientation in decision making in multimorbidity during primary care consultations, we developed guiding principles and named them after the Greek mythological figure Ariadne. For this purpose, we convened a two-day expert workshop accompanied by an international symposium in October 2012 in Frankfurt, Germany. Against the background of the current state of knowledge presented and discussed at the symposium, 19 experts from North America, Europe, and Australia identified the key issues of concern in the management of multimorbidity in primary care in panel and small group sessions and agreed upon making use of formal and informal consensus methods. The proposed preliminary principles were refined during a multistage feedback process and discussed using a case example. The sharing of realistic treatment goals by physicians and patients is at the core of the Ariadne principles. These result from i) a thorough interaction assessment of the patient’s conditions, treatments, constitution, and context; ii) the prioritization of health problems that take into account the patient's preferences – his or her most and least desired outcomes; and iii) individualized management realizes the best options of care in diagnostics, treatment, and prevention to achieve the goals. Goal attainment is followed-up in accordance with a re-assessment in planned visits. The occurrence of new or changed conditions, such as an increase in severity, or a changed context may trigger the (re-)start of the process. Further work is needed on the implementation of the formulated principles, but they were recognized and appreciated as important by family physicians and primary care researchers.
Purpose: While more advanced COVID-19 necessitates medical interventions and hospitalization, patients with mild COVID-19 do not require this. Identifying patients at risk of progressing to advanced COVID-19 might guide treatment decisions, particularly for better prioritizing patients in need for hospitalization.
Methods: We developed a machine learning-based predictor for deriving a clinical score identifying patients with asymptomatic/mild COVID-19 at risk of progressing to advanced COVID-19. Clinical data from SARS-CoV-2 positive patients from the multicenter Lean European Open Survey on SARS-CoV-2 Infected Patients (LEOSS) were used for discovery (2020-03-16 to 2020-07-14) and validation (data from 2020-07-15 to 2021-02-16).
Results: The LEOSS dataset contains 473 baseline patient parameters measured at the first patient contact. After training the predictor model on a training dataset comprising 1233 patients, 20 of the 473 parameters were selected for the predictor model. From the predictor model, we delineated a composite predictive score (SACOV-19, Score for the prediction of an Advanced stage of COVID-19) with eleven variables. In the validation cohort (n = 2264 patients), we observed good prediction performance with an area under the curve (AUC) of 0.73 ± 0.01. Besides temperature, age, body mass index and smoking habit, variables indicating pulmonary involvement (respiration rate, oxygen saturation, dyspnea), inflammation (CRP, LDH, lymphocyte counts), and acute kidney injury at diagnosis were identified. For better interpretability, the predictor was translated into a web interface.
Conclusion: We present a machine learning-based predictor model and a clinical score for identifying patients at risk of developing advanced COVID-19.
Das Vorkommen von Kunststoffmaterialien <5 mm, sogenanntem Mikroplastik
(MP), in marinen Ökosystemen wurde bereits eingehend untersucht. Im Gegensatz dazu existieren erhebliche Wissenslücken hinsichtlich der Abundanz und der Auswirkung von MP in limnischen Ökosystemen. Vor diesem Hintergrund steht das Umweltvorkommen, mögliche Eintragspfade und die Auswirkungen von MP auf aquatische Invertebraten im Fokus dieser Arbeit. Zur Bestimmung der MP-Abundanz in Fließgewässern sind Sedimente der Elbe untersucht worden. Hierfür wurde zunächst eine Methode zur Extraktion und Identifizierung von MP aus Umweltproben entwickelt, optimiert und validiert. In der anschließenden Analyse konnten in elf Probenahmestellen 55–17400 MP kg-1 in den Sedimenten nachgewiesen werden. Der Einfluss der Gezeitenströmung wurde anhand der abnehmenden MP-Abundanz in der Tideelbe deutlich. Insgesamt weisen die Ergebnisse darauf hin, dass Sedimente von Fließgewässern eine Senke für MP darstellen. Für die Evaluation von Eintragspfaden von MP in Oberflächengewässer wurden die
Einleiter von fünf Kläranlagen beprobt und 240–897 MP m-3 in den Einleitern detektiert. Die Detailuntersuchung einer Kläranlage zeigte, dass >99% der MP-Fracht im Verlauf der Abwasseraufbereitung entfernt wird. Hierbei erfolgte die Hauptentfernung
bereits in der Vorklärung. Somit stellen Kläranlagen effektive Barrieren für den Eintrag von MP dar.
Insgesamt wird ersichtlich, dass die getesteten Arten C. riparius und G. pulex relativ insensitiv gegenüber einer MP-Exposition sind. So konnten bei G. pulex keine und bei C. riparius erst bei sehr hohen MP-Konzentrationen adverse Effekte detektiert werden. Hierbei ist die Autökologie der Spezies eine mögliche Erklärung für die Toleranz gegenüber partikulären Stressoren. Auf Basis dieser Daten sowie der ermittelten MPAbundanz kann das Umweltrisiko von MP in limnischen Ökosystemen vorläufig als
gering eingeschätzt werden. Hierbei gilt es jedoch zu beachten, dass eine abschließende
Bewertung aufgrund der nach wie vor existierenden Unsicherheiten nicht möglich ist. Diese Unsicherheiten betreffen die Umweltkonzentration von MP <80 μm, das Verhaltensowie das Wirkpotential dieser heterogenen und dynamischen Stressorenklasse
in umweltrelevanten Szenarien.
Microplastics (MP) are contaminants of emerging concern in aquatic ecosystems. While the number of studies is rapidly increasing, a comparison of the toxicity of MP and natural particulate matter is largely missing. In addition, research focusses on the impacts of hydrophobic chemicals sorbed to plastics. However, the interactive effects of MP and hydrophilic, dissolved chemicals remain largely unknown. Therefore, we conducted chronic toxicity studies with larvae of the freshwater dipteran Chironomus riparius exposed to unplasticised polyvinyl chloride MP (PVC-MP) as well as kaolin and diatomite as reference materials for 28 days. In addition, we investigated the effects of particles in combination with the neonicotinoid imidacloprid in a multiple-stressor experiment. High concentrations of kaolin positively affected the chironomids. In contrast, exposure to diatomite and PVC-MP reduced the emergence and mass of C. riparius. Likewise, the toxicity of imidacloprid was enhanced in the presence of PVC-MP and slightly decreased in the co-exposure with kaolin. Overall, parallel experiments and chemical analysis indicate that the toxicity of PVC-MP was not caused by leached or sorbed chemicals. Our study demonstrates that PVC-MP induce more severe effects than both natural particulate materials. However, the latter are not benign per se, as the case of diatomite highlights. Considering the high, environmentally irrelevant concentrations needed to induce adverse effects, C. riparius is insensitive to exposures to PVC-MP.