Refine
Year of publication
Document Type
- Article (15)
- Preprint (4)
- Part of a Book (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Polymers (2)
- ATR-FTIR (1)
- Abundance (1)
- Advanced stage (1)
- Autecology (1)
- COVID-19 (1)
- Chemistry (1)
- Cold hardiness (1)
- Cold tolerance (1)
- Comorbidity (1)
Aquatic ecosystems are globally contaminated with microplastics (MP). However, comparative data on MP levels in freshwater systems is still scarce. Therefore, the aim of this study is to quantify MP abundance in water and sediment of the German river Elbe using visual, spectroscopic (Fourier-transform infrared spectroscopy) and thermo analytical (pyrolysis gas chromatography mass spectrometry) methods. Samples from eleven German sites along the German part of the Elbe were collected, both in the water and sediment phase, in order to better understand MP sinks and transport mechanisms. MP concentrations differed between the water and sediment phase. Sediment concentrations (mean: 3,350,000 particles m−3, 125–5000 μm MP) were in average 600,000-fold higher than water concentrations (mean: 5.57 particles m−3, 150–5000 μm MP). The abundance varied between the sampling sites: In sediments, the abundance decreased in the course of the river while in water samples no such clear trend was observed. This may be explained by a barrage retaining sediments and limiting tidal influence in the upstream parts of the river. Particle shape differed site-specifically with one site having exceptionally high quantities of spheres, most probably due to industrial emissions of PS-DVB resin beads. Suspended MP consisted predominantly of polyethylene and polypropylene whereas sediments contained a higher diversity of polymer types. Determined MP concentrations correspond well to previous results from other European rivers. In a global context, MP levels in the Elbe relate to the lower (water) to middle section (sediment) of the global range of MP concentrations determined for rivers worldwide. This highlights that elevated MP levels are not only found in single countries or continents, but that MP pollution is an issue of global concern.
Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J/psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.
Feeding type and development drive the ingestion of microplastics by freshwater invertebrates
(2017)
Microscopic plastic items (microplastics) are ubiquitously present in aquatic ecosystems. With decreasing size their availability and potential to accumulate throughout food webs increase. However, little is known on the uptake of microplastics by freshwater invertebrates. To address this, we exposed species with different feeding strategies to 1, 10 and 90 µm fluorescent polystyrene spheres (3–3 000 particles mL−1). Additionally, we investigated how developmental stages and a co-exposure to natural particles (e.g., food) modulate microplastic ingestion. All species ingested microplastics in a concentration-dependent manner with Daphnia magna consuming up to 6 180 particles h−1, followed by Chironomus riparius (226 particles h−1), Physella acuta (118 particles h−1), Gammarus pulex (10 particles h−1) and Lumbriculus variegatus (8 particles h−1). D. magna did not ingest 90 µm microplastics whereas the other species preferred larger microplastics over 1 µm in size. In C. riparius and D. magna, size preference depended on the life stage with larger specimens ingesting more and larger microplastics. The presence of natural particles generally reduced the microplastics uptake. Our results demonstrate that freshwater invertebrates have the capacity to ingest microplastics. However, the quantity of uptake depends on their feeding type and morphology as well as on the availability of microplastics.
Remote sensing data are essential for monitoring the Earth’s surface waters, especially since the amount of publicly available in-situ data is declining. Satellite altimetry provides valuable information on the water levels and variations of lakes, reservoirs and rivers. In combination with satellite imagery, the derived time series allow the monitoring of lake storage changes and river discharge. However, satellite altimetry is limited in terms of its spatial resolution due to its measurement geometry, only providing information in the nadir direction beneath the satellite’s orbit. In a case study in the Mississippi River Basin (MRB), this study investigates the potential and limitations of past and current satellite missions for the monitoring of basin-wide storage changes. For that purpose, an automated target detection is developed and the extracted lake surfaces are merged with the satellites’ tracks. This reveals that the current altimeter configuration misses about 80% of all lakes larger than 0.1 km2 in the MRB and 20% of lakes larger than 10 km2, corresponding to 30% and 7% of the total water area, respectively. Past altimetry configurations perform even more poorly. From the larger water bodies represented by a global hydrology model, at least 91% of targets and 98% of storage changes are captured by the current altimeter configuration. This will improve significantly with the launch of the planned Surface Water and Ocean Topography (SWOT) mission.
Background: While the use of plastic materials has generated huge societal benefits, the "plastic age" comes with downsides: One issue of emerging concern is the accumulation of plastics in the aquatic environment. Here, so-called microplastics (MP), fragments smaller than 5 mm, are of special concern because they can be ingested throughout the food web more readily than larger particles. Focusing on freshwater MP, we briefly review the state of the science to identify gaps of knowledge and deduce research needs.
State of the science: Environmental scientists started investigating marine (micro)plastics in the early 2000s. Today, a wealth of studies demonstrates that MP have ubiquitously permeated the marine ecosystem, including the polar regions and the deep sea. MP ingestion has been documented for an increasing number of marine species. However, to date, only few studies investigate their biological effects. The majority of marine plastics are considered to originate from land-based sources, including surface waters. Although they may be important transport pathways of MP, data from freshwater ecosystems is scarce. So far, only few studies provide evidence for the presence of MP in rivers and lakes. Data on MP uptake by freshwater invertebrates and fish is very limited.
Knowledge gaps: While the research on marine MP is more advanced, there are immense gaps of knowledge regarding freshwater MP. Data on their abundance is fragmentary for large and absent for small surface waters. Likewise, relevant sources and the environmental fate remain to be investigated. Data on the biological effects of MP in freshwater species is completely lacking. The accumulation of other freshwater contaminants on MP is of special interest because ingestion might increase the chemical exposure. Again, data is unavailable on this important issue.
Conclusions: MP represent freshwater contaminants of emerging concern. However, to assess the environmental risk associated with MP, comprehensive data on their abundance, fate, sources, and biological effects in freshwater ecosystems are needed. Establishing such data critically depends on a collaborative effort by environmental scientists from diverse disciplines (chemistry, hydrology, ecotoxicology, etc.) and, unsurprisingly, on the allocation of sufficient public funding.
The ubiquitous detection of microplastics in aquatic ecosystems promotes the concern for adverse impacts on freshwater ecosystems. The wide variety of material types, sizes, shapes, and physicochemical properties renders interactions with biota via multiple pathways probable.
So far, our knowledge about the uptake and biological effects of microplastics comes from laboratory studies, applying simplified exposure regimes (e.g., one polymer and size, spherical shape, high concentrations) often with limited environmental relevance. However, the available data illustrates species- and material-related interactions and highlights that microplastics represent a multifaceted stressor. Particle-related toxicities will be driven by polymer type, size, and shape. Chemical toxicity is driven by the adsorption-desorption kinetics of additives and pollutants. In addition, microbial colonization, the formation of hetero-aggregates, and the evolutionary adaptations of the biological receptor further increase the complexity of microplastics as stressors. Therefore, the aim of this chapter is to synthesize and critically revisit these aspects based on the state of the science in freshwater research. Where unavailable we supplement this with data on marine biota. This provides an insight into the direction of future research.
In this regard, the challenge is to understand the complex interactions of biota and plastic materials and to identify the toxicologically most relevant characteristics of the plethora of microplastics. Importantly, as the direct biological impacts of natural particles may be similar, future research needs to benchmark synthetic against natural materials. Finally, given the scale of the research question, we need a multidisciplinary approach to understand the role of microplastics in a multiple-particle world.
Noneequilibrium models (three-fluid hydrodynamics and UrQMD) use to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that these two models - although they do treat the most interesting early phase of the collisions quite differently(thermalizing QGP vs. coherent color fields with virtual particles) - both yields a reasonable agreement with a large variety of the available heavy ion data.
Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models - although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles) -- all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/Psi meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out.
Background:Aedes aegypti is a potential vector for several arboviruses including dengue and Zika viruses. The species seems to be restricted to subtropical/tropical habitats and has difficulties in establishing permanent populations in southern Europe, probably due to constraints during the winter season. The aim of this study was to systematically analyze the cold tolerance (CT) of Ae. aegypti in its most cold-resistant life stage, the eggs.
Methods: The CT of Ae. aegypti eggs was compared with that of Ae. albopictus which is well established in large parts of Europe. By systematically studying the literature (meta-analysis), we recognized that CT has been rarely tested in Ae. aegypti eggs, but eggs can survive at zero and sub-zero temperatures for certain exposure periods. To overcome potential bias from experimental differences between studies, we then conducted species comparisons using a harmonized high-resolution CT measuring method. From subtropical populations of the same origin, the survival (hatching in %) and emergence of adults of both species were measured after zero and sub-zero temperature exposures for up to 9 days (3 °C, 0 °C and − 2 °C: ≤ 9 days; − 6 °C: ≤ 2 days).
Results: Our data show that Ae. aegypti eggs can survive low and sub-zero temperatures for a short time period similar to or even better than those of Ae. albopictus. Moreover, after short sub-zero exposures of eggs of both species, individuals still developed into viable adults (Ae. aegypti: 3 adults emerged after 6 days at − 2 °C, Ae. albopictus: 1 adult emerged after 1 day at − 6 °C).
Conclusions: Thus, both the literature and the present experimental data indicate that a cold winter may not be the preventing factor for the re-establishment of the dengue vector Ae. aegypti in southern Europe.
The toxicity of microplastics on Daphnia magna as a key model for freshwater zooplankton is well described. While several studies predict population-level effects based on short-term, individual-level responses, only very few have validated these predictions experimentally. Thus, we exposed D. magna populations to irregular polystyrene microplastics and diatomite as natural particle (both ≤ 63 μm) over 50 days. We used mixtures of both particle types at fixed particle concentrations (50,000 particles mL-1) and recorded the effects on overall population size and structure, the size of the individual animals, and resting egg production. Particle exposure adversely affected the population size and structure and induced resting egg production. The terminal population size was 28–42% lower in exposed compared to control populations. Interestingly, mixtures containing diatomite induced stronger effects than microplastics alone, highlighting that natural particles are not per se less toxic than microplastics. Our results demonstrate that an exposure to synthetic and natural particles has negative population-level effects on zooplankton. Understanding the mixture toxicity of microplastics and natural particles is important given that aquatic organisms will experience exposure to both. Just as for chemical pollutants, better knowledge of such joint effects is essential to fully understand the environmental impacts of complex particle mixtures.
Environmental Implications While microplastics are commonly considered hazardous based on individual-level effects, there is a dearth of information on how they affect populations. Since the latter is key for understanding the environmental impacts of microplastics, we investigated how particle exposures affect the population size and structure of Daphnia magna. In addition, we used mixtures of microplastics and natural particles because neither occurs alone in nature and joint effects can be expected in an environmentally realistic scenario. We show that such mixtures adversely affect daphnid populations and highlight that population-level and mixture-toxicity designs are one important step towards more environmental realism in microplastics research.