Refine
Year of publication
Document Type
- Preprint (18)
- Article (7)
- Conference Proceeding (2)
- Working Paper (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (30)
Is part of the Bibliography
- no (30)
Keywords
- Kollisionen schwerer Ionen (3)
- heavy ion collisions (3)
- Atmospheric science (2)
- Climate change (2)
- QGP (2)
- Quark-Gluon-Plasma (2)
- Relativistic heavy-ion collisions (2)
- quark-gluon-plasma (2)
- Acute myeloid leukemia (1)
- All-trans retinoic acid (1)
Institute
The microscopic phasespace approach URQMD is used to investigate the stopping power and particle production in heavy systems at SPS and RHIC energies. We find no gap in the baryon rapidity distribution even at RHIC. For CERN energies URQMD shows a pile up of baryons and a supression of multi-nucleon clusters at midrapidity.
Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models - although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles) -- all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/Psi meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out.
The relaxation of hot nuclear matter to an equilibrated state in the central zone of heavy-ion collisions at energies from AGS to RHIC is studied within the microscopic UrQMD model. It is found that the system reaches the (quasi)equilibrium stage for the period of 10-15 fm/c. Within this time the matter in the cell expands nearly isentropically with the entropy to baryon ratio S/A = 150 - 170. Thermodynamic characteristics of the system at AGS and at SPS energies at the endpoints of this stage are very close to the parameters of chemical and thermal freeze-out extracted from the thermal fit to experimental data. Predictions are made for the full RHIC energy square root s = 200$ AGeV. The formation of a resonance-rich state at RHIC energies is discussed.
Local equilibrium in heavy ion collisions. Microscopic model versus statistical model analysis
(1999)
The assumption of local equilibrium in relativistic heavy ion collisions at energies from 10.7 AGeV (AGS) up to 160 AGeV (SPS) is checked in the microscopic transport model. Dynamical calculations performed for a central cell in the reaction are compared to the predictions of the thermal statistical model. We find that kinetic, thermal and chemical equilibration of the expanding hadronic matter are nearly approached late in central collisions at AGS energy for t >= 10 fm/c in a central cell. At these times the equation of state may be approximated by a simple dependence P ~= (0.12-0.15) epsilon. Increasing deviations of the yields and the energy spectra of hadrons from statistical model values are observed for increasing energy, 40 AGeV and 160 AGeV. These violations of local equilibrium indicate that a fully equilibrated state is not reached, not even in the central cell of heavy ion collisions at energies above 10 AGeV. The origin of these findings is traced to the multiparticle decays of strings and many-body decays of resonances.
The hypothesis of local equilibrium (LE) in relativistic heavy ion collisions at energies from AGS to RHIC is checked in the microscopic transport model. We find that kinetic, thermal, and chemical equilibration of the expanding hadronic matter is nearly reached in central collisions at AGS energy for t >_ fm/c in a central cell. At these times the equation of state may be approximated by a simple dependence P ~= (0.12-0.15) epsilon. Increasing deviations of the yields and the energy spectra of hadrons from statistical model values are observed for increasing bombarding energies. The origin of these deviations is traced to the irreversible multiparticle decays of strings and many-body (N >_ 3) decays of resonances. The violations of LE indicate that the matter in the cell reaches a steady state instead of idealized equilibrium. The entropy density in the cell is only about 6% smaller than that of the equilibrium state.
Noneequilibrium models (three-fluid hydrodynamics and UrQMD) use to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that these two models - although they do treat the most interesting early phase of the collisions quite differently(thermalizing QGP vs. coherent color fields with virtual particles) - both yields a reasonable agreement with a large variety of the available heavy ion data.
Microscopic calculations of central collisions between heavy nuclei are used to study fragment production and the creation of collective flow. It is shown that the final phase space distributions are compatible with the expectations from a thermally equilibrated source, which in addition exhibits a collective transverse expansion. However, the microscopic analyses of the transient states in the reaction stages of highest density and during the expansion show that the system does not reach global equilibrium. Even if a considerable amount of equilibration is assumed, the connection of the measurable final state to the macroscopic parameters, e.g. the temperature, of the transient "equilibrium" state remains ambiguous.
In der vorliegenden Arbeit wurden die Eigenschaften heißer dichter Kernmaterie in relativistischen Schwerionenkollisionen mit Hilfe transporttheoretischer Methoden untersucht. Dabei wurden über einen weiten Energiebereich von 1 A GeV am GSI/SIS18 über BNL/AGS und GSI/SIS200 bis hin zu 160A GeV Einschußenergie am CERN/SPS verschiedene Observablen diskutiert und mit eigenen Modellrechnungen verglichen. Zunächst wurden in Kapitel 1 in die theoretischen Grundlagen der mikroskopischen Transporttheorie eingeführt und die wichtigsten semiklassischen mikroskopischen Transportmodelle vorgestellt. Das unter eigener Mitwirkung am Institut für Theoretische Physik entstandene Transportmodell, das UrQMD-Modell, wurde im Rahmen dieser Arbeit bis zur Versionsnummer 1.3 verbessert und erweitert. Das Modell und ein Überblick verschiedener Observablen im Modell wurden bereits früher gemeinsam publiziert. Die ausführliche Diskussion dieses Modells in der jetzigen Fassung findet sich in Kapitel 2. Besonders der komplexe Kollisionsterm wird detailliert und systematisch beschrieben. Wo vorhanden, werden die implementierten Kanäle und Wirkungsquerschnitte den experimentellen Daten gegenübergestellt. In Kapitel 3 wurde eine Methode zur relativistisch korrekten Berechnung von Baryon und Mesonendichten sowie von Energiedichten entwickelt. Mit dieser Methode konnten Zeitentwicklungen und Ortsraumverteilungen von Dichten im Bereich von 1 bis 160 A GeV erstellt werden. Im Vordergrund der Analysen stand die Fragestellung, welches Raum-Zei-tVolumen die Hochdichtephase in Abhängigkeit von der Einschuß energie einnehmen kann. Bemerkenswertes Ergebnis dieser Untersuchungen war, daß die maximal erreichbare Dichte zwar mit der Einschußenergie monoton ansteigt, je doch eine besonders ausgedehnte und langlebige Phase hoher Baryonendichte bei Einschußenergien zwischen 5 und 10 GeV/Nukleon erreicht wird. Auch wurde am Beispiel des Systems Uran-Uran bei 23 A GeV untersucht, inwieweit durch den Einsatz deformierter Kerne die Hochdichtephase intensiviert werden kann. Die Rechnungen haben gezeigt, daß die vorhergesagte Steigerung der Baryondichte um 30% bei Verlängerung der Hochdichtephase um 50% nicht realistisch ist. In weiteren Analysen wurden die in Schwerionenkollisionen erreichbaren Energiedichten diskutiert, sowie eine Interpretation der nichtformierten Hadronen als ein "partonischer" Freiheitsgrad vorgestellt. Es hat sich gezeigt, daß der partonische Beitrag zur Energiedichte vor allem in der Frühphase der Kollision bei weitem überwiegt. Im Kapitel 4 wurde ein Modell zur Produktion von Kaonen in der Nähe der Produktionsschwelle vorgestellt. Die elementaren Produktionskanäle wurden hier über hoch massige Resonanzen modelliert, im Gegensatz zu anderen vorgeschlagenen Modellen, die direkte Parametrisierungen vornehmen. Desweiteren wurden alle implementierten Produktions und Streukaäale von seltsamen Hadronen im Vergleich mit experimentellen Daten diskutiert. Das Kapitel 5 widmete sich ausschließlich der Produktion von Mesonen bei SIS18 Energien. Zunächst wurde ausführlich auf den Produktions und Absorptionsprozeß von Pionen im System Pi-N-Delta eingegangen. Sowohl Spektren als auch Multiplizitäten in Abhängigkeit von der Anzahl an Partizipanten im UrQMD wurden mit experimentellen Daten von TAPS und FOPI verglichen. Die Ergebnisse legen nahe, daß die Pionproduktion bis 2 A GeV im Rahmen der mikroskopischen Transporttheorie vollständig verstanden werden kann, wenn neben dem Delta1232 auch alle höheren Resonanzzustände sowie multiste-pAnregungen in die Rechnung einbezogen werden. Auch die Produktion von Kaonen in Abhängigkeit von der Anzahl an Partizipanten und der Systemgröße wurde diskutiert. Auch hier können die gemessenen Zusammenhänge qualitativ im Rahmen des mikroskopischen Modells verstanden werden. Zum Abschluß des Kapitels wurden Ausfrierzeiten, radien und dichten für einzelne Baryonen und Mesonenspezies analysiert. Zentrales Ergebnis dieser Untersuchungen ist, daß es bei einer Schwerionenreaktion keineswegs zu einem simultanen Ausfrieren aller Hadronspezies bei gleicher Dichte und gleichem Radius kommt, sondern daß die Ausfrierverteilungen eine komplexe Zeit und Ortsraumstruktur aufweisen, die u.a. von den Wirkungsquerschnitten und Produktionsmechanismen für die einzelnen Spezies abhängt. In Kapitel 6 wurden die erst kürzlich publizierten Daten der NA49Kollaboration bei 40, 80 und 160 A GeV einer detaillierten Analyse mit dem UrQMD-Modell unterzogen, sowie Vorhersagen für die geplanten Messungen bei 20 A GeV gemacht. Es konnte gezeigt werden, daß es für den Vergleich von Modellrechnung mit dem Experiment notwendig ist, genau die gleiche Zentralitätsbestimmung wie im Experiment zu benutzen. Eine einfache Beschränkung auf ein festes Stoßparameterintervall führt zur Selektion einer falschen Gruppe von Ereignissen. Ein Vergleich des Abstoppverhaltens von Protonen, Hyperonen, Antiprotonen und Antihyperonen hat gezeigt, daß zwar die Dynamik der Baryonen im Rahmen des UrQMD-Modells gut verstanden werden kann, jedoch die Produktion der Antibaryonen um ein mehrfaches unterschätzt wird. Verschiedene Erklärungsmodelle, wie screening oder die Verletzung des detaillierten Gleichgewichts bei Stringzerfällen wurden diskutiert. Auch der starke Einfluß der Implementierung von Annihilationskanälen konnte aufgezeigt werden. Zum Schluß des Kapitels wurde die Produktion von Kaonen und Antikaonen im Modell und im Experiment einer genauen Analyse unterzogen. Die Modellrechnungen legen nahe, daß bei SPS-Energien weder Kaonen noch Antikaonen als direkte Signael der frühen Phase der Kollision betrachtet werden können. Zwar wird die Gesamtseltsamkeit des Systems im wesentlichen in den ersten, harten Kollisionen erzeugt, jedoch finden hinterher noch zahllose Kollisionen mit Seltsamkeitsaustausch statt, bevor Kaonen und Antikaonen endlich ausfrieren. Im letzten Kapitel schließlich wurden die Analysen auf die Daten vom BNL/AGS ausgedehnt und ein vergleichender Überblick über den gesamten Energiebereich von SIS18 bis SPS vorgenommen. Um die Robustheit sowohl der Observablen als auch der mikroskopischen Transporttheorie zu testen, wurden bei acht Energien die Form der Spektren von Protonen, Pionen, Kaonen, Lambdas und Sigmas in Rechnungen mit zwei unabhängigen Transportmodellen und den experimentellen Daten verglichen. Desweiteren wurden für alle Spektren sowohl die 4-Pi -Daten als die Werte bei Mittrapidität ermittelt und als Funktion der Einschußenergie mit den experimentellen Daten verglichen. Schließlich wurden aus den Multiplizitäten Hadron-Hadron-Verhältnise gebildet und diese wiederum mit den Daten verglichen. Neben vielen interessanten Detailerkenntnissen konnte das folgende grobe Bild entwickelt werden: Die korrekte Produktion von Seltsamkeit, sowohl in Hyperonen als auch in Kaonen, gelingt beiden hadronischen Modellen, ohne daß besondere nichthadronische Effekte angenommen werden müßten, über den gesamten Energiebereich. Die Pionproduktion wird bei den verschiedenen Energien mal von dem einen, mal von dem anderen Modell besser beschrieben, nie jedoch sind die Abweichungen größer als etwa 20%. Die Teilchenverhältnisse, deren qualitativer Verlauf ein mögliches Signal für einen Phasenübergang sein soll, werden trotz guter Beschreibung der Pionen und sehr guter Beschreibung der Kaonen von beiden Modellen qualitativ völlig unterschiedlich vorhergesagt. Die im Rahmen dieser Arbeit durchgeführten Rechnungen legen also nahe, daß zum einen die Rolle der Seltsamkeitsproduktion als Indikator für nichthadronische Physik überdacht werden sollte, und zum anderen der qualitative Verlauf des K +/Pi -Verhältnisses aufgrund der geringen Fehlertolleranz nicht als belastbarer Beweis eines Phasenübergangs gesehen werden sollte.
We analyze the reaction dynamics of central Pb+Pb collisions at 160 GeV/nucleon. First we estimate the energy density pile-up at mid-rapidity and calculate its excitation function: The energy density is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for E >= 30 GeV/nucleon. The energy density reaches up to 4 GeV/fm 3, 95% of which are contained in partonic degrees of freedom. It is shown that cells of hadronic matter, after the early reaction phase, can be viewed as nearly chemically equilibrated. This matter never exceeds energy densities of 0.4 GeV/fm 3, i.e. a density above which the notion of separated hadrons loses its meaning. The final reaction stage is analyzed in terms of hadron ratios, freeze-out distributions and a source analysis for final state pions.
Local kinetic and chemical equilibration is studied for Au+Au collisions at 10.7 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits dramatic deviations from equilibrium during the high density phase of the collision. Thermal and chemical equilibration of the hadronic matter seems to be established in the later stages during a quasiisentropic expansion, observed in the central reaction cell with volume 125 fm3. For t > 10 fm/c the hadron energy spectra in the cell are nicely reproduced by Boltzmann distributions with a common rapidly dropping temperature. Hadron yields change drastically and at the late expansion stage follow closely those of an ideal gas statistical model. The equation of state seems to be simple at late times: P = 0.12 Epsilon. The time evolution of other thermodynamical variables in the cell is also presented.