Refine
Document Type
- Article (33)
- Preprint (2)
- Doctoral Thesis (1)
Language
- English (36)
Has Fulltext
- yes (36)
Is part of the Bibliography
- no (36)
Institute
- Physik (35)
We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at sqrt[sNN]=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5<pT<12 GeV/c. The collision energy dependence of the yields and the centrality and pT dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of pT-dependent suppression, which may be expected from models incorporating jet attenuation in cold nuclear matter or scattering of fragmentation hadrons.
We report measurements of Xi and Xi-bar hyperon absolute yields as a function of rapidity in 158 GeV/c Pb+Pb collisions. At midrapidity, dN/dy = 2.29 +/- 0.12 for Xi, and 0.52 +/- 0.05 for Xi-bar, leading to the ratio of Xi-bar/Xi = 0.23 +/- 0.03. Inverse slope parameters fitted to the measured transverse mass spectra are of the order of 300 MeV near mid-rapidity. The estimated total yield of Xi particles in Pb+Pb central interactions amounts to 7.4 +/- 1.0 per collision. Comparison to Xi production in properly scaled p+p reactions at the same energy reveals a dramatic enhancement (about one order of magnitude) of Xi production in Pb+Pb central collisions over elementary hadron interactions.
This thesis presented the measurement of antideuteron and antihelium-3 production in central AuAu collisions at V SNN = 200 GeV center-of-mass energy at RHIC. The analysis is based on STAR data, about 3 x 10 high 6 events at top 10% centrality. Within the data sample a total number of about 5000 antideuterons and 193 antihelium-3 were observed in the STARTPC at mid-rapidity. The specific energy loss measurement in the TPC provides antideuteron identification only in a small momentum window, antihelium-3 however can be identified nearly background free with almost complete momentum range coverage. Following the statistical analysis of the hadronic composition at chemical freeze-out of the fireball, the antinuclei abundances were analyzed in terms of the same statistical description. Now applied to the clusterization of the fireball, the statistical analysis yields a fireball temperature of (135+-10) MeV and chemical potential of (5+-10) MeV at kinetic freeze-out. In the same way as the hadronization, the clusterization process is phase-space dominated and clusters are born into a state of maximum entropy. The large sample of observed antihelium-3 allowed for the first time in heavy-ion physics to calculate a differential multiplicity and invariant cross section as a function of transverse momentum. As expected, the collective transverse flow in the fireball flattens the shape of the transverse momentum spectrum and leads to the high inverse slope parameter of (950+-140) MeV of the antihelium-3 spectrum. With the extracted mean transverse momentum of antihelium-3, the collective flow velocity in transverse direction could be estimated. As the average thermal velocity is small compared to the mean collective flow velocity for heavy particles, the mean transverse momentum of antihelium-3 by itself constrains the flow velocity. Here, a simple ideal-gas approximation was fitted to the distribution of the mean transverse momentum as a function of particle mass and provided direct access to the kinetic freeze-out temperature and the flow velocity. A concept, which is complementary to the combined analysis of momentum spectra and two-particle HBT correlation methods commonly used to extract these parameters, and a cross check for the statistical analysis. The upper limit for the transverse collective flow velocity from the antihelium-3 measurement alone is v flow <= (0.68+-0.06)c, whereas the ideal-gas approximation yields a temperature of (130+-40) MeV and v flow = (0.46+-0.08)c. The results indicate, that the kinetic freeze-out conditions at SPS and RHIC are very similar, except for a smaller baryon chemical potential at RHIC. The simultaneous inclusive measurement of antiprotons allowed to study the cluster production in terms of the coalescence picture. With the large momentum coverage of the antihelium-3 momentum spectrum, the coalescence parameter could be calculated as a function of transverse momentum. Due to the difference between antiproton and antihelium-3 inverse slopes, increases with increasing transverse momentum - again a direct consequence of collective transverse flow. Both B2 and B3 follow the common behavior of decreasing coalescence parameters as a function of collision energy. According to the simple thermodynamic coalescence model, this indicates an increasing freeze-out volume for higher energies and is confirmed by the interpretation of the coalescence parameters in the framework of Scheibl and Heinz. Their model includes a dynamically expanding source in a quantum mechanical description of the coalescence process and expresses the coalescence parameter as a function of the homogeneity volume V hom accessible also in two-particle HBT correlation analyzes. The values for the antideuteron and antihelium-3 results agree well with the homogeneity volume from pion-pion correlations, but do not seem to follow the same transverse mass dependence. A comparison with proton-proton correlations may clarify this point and provide an important cross check for this analysis. Compared to SPS the homogeneity volume increases nearly by a factor of two. The analysis of the antinuclei emission at RHIC allowed to study the kinetic freeze-out of the created fireball. The results show, that the temperature and mean transverse velocity in the expanding system does not change significantly, when the collision energy increases by one order of magnitude. Only the source volume, i.e. the homogeneity volume, increases. That leaves open questions for the theoreticians to the details of the system evolution from the initial hot and dense phase - the initial energy density is a factor of two to three higher at RHIC than at SPS - to the final kinetic freeze-out with similar conditions. At the same time, the results are important constraints for the theoretical descriptions. The successful implementation of the Level-3 trigger system in STAR opens the door for the measurement of very rare signals. Indeed, in the coalescence physics perspective, the first observations of anti-alpha 4 He nuclei and antihypertritons 3/Delta H will come within the reach of STAR, in addition to a high statistics sample of antihelium-3.
We report inclusive photon measurements about midrapidity ( |y| <0.5 ) from 197 Au + 197 Au collisions at sqrt[sNN ]=130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta E/E ~ 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum ( pt ) spectra of pi 0 mesons about midrapidity ( |y| <1 ) via the pi 0 --> gamma gamma decay channel. The fractional contribution of the pi 0 --> gamma gamma decay to the inclusive photon spectrum decreases by 20%±5% between pt =1.65 GeV/c and pt =2.4 GeV/c in the most central events, indicating that relative to pi 0 --> gamma gamma decay the contribution of other photon sources is substantially increasing.
We report on the rapidity and centrality dependence of proton and antiproton transverse mass distributions from 197Au + 197Au collisions at sqrt[sNN ]=130 GeV as measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Our results are from the rapidity and transverse momentum range of |y| <0.5 and 0.35< pt <1.00 GeV/c . For both protons and antiprotons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y| <0.5 . Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton (antiproton) yields and transverse mass distributions the possibility of prehadronic collective expansion may have to be taken into account.
We present the first large-acceptance measurement of event-wise mean transverse momentum <pt> fluctuations for Au-Au collisions at nucleon-nucleon center-of-momentum collision energy sqrt[sNN] = 130 GeV. The observed nonstatistical <pt> fluctuations substantially exceed in magnitude fluctuations expected from the finite number of particles produced in a typical collision. The r.m.s. fractional width excess of the event-wise <pt> distribution is 13.7±0.1(stat) ±1.3(syst)% relative to a statistical reference, for the 15% most-central collisions and for charged hadrons within pseudorapidity range | eta |<1,2 pi azimuth, and 0.15 <= pt <= 2 GeV/c. The width excess varies smoothly but nonmonotonically with collision centrality and does not display rapid changes with centrality which might indicate the presence of critical fluctuations. The reported <pt> fluctuation excess is qualitatively larger than those observed at lower energies and differs markedly from theoretical expectations. Contributions to <pt> fluctuations from semihard parton scattering in the initial state and dissipation in the bulk colored medium are discussed.
We present STAR measurements of the azimuthal anisotropy parameter v2 and the binary-collision scaled centrality ratio RCP for kaons and lambdas ( Lambda + Lambda -bar) at midrapidity in Au+Au collisions at sqrt[sNN]=200 GeV. In combination, the v2 and RCP particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish pT ~ 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K0S and Lambda + Lambda -bar v2 values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.
Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at sqrt[sNN]=130 GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e., transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.
Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at sqrt[sNN]=130 GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freeze-out. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.
The balance function is a new observable based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for charged particle pairs and identified charged pion pairs in Au+Au collisions at sqrt[sNN]=130 GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for peripheral collisions have widths consistent with model predictions based on a superposition of nucleon-nucleon scattering. Widths in central collisions are smaller, consistent with trends predicted by models incorporating late hadronization.