Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- 900 GeV (1)
- ALICE (1)
- High-energy neutron detection (1)
- LHC (1)
- Multi-neutron detection (1)
- PYTHIA (1)
- Plastic scintillator array (1)
- Reactions with relativistic radioactive beams (1)
- Transverse momentum (1)
Institute
NeuLAND (New Large-Area Neutron Detector) is the next-generation neutron detector for the R3B (Reactions with Relativistic Radioactive Beams) experiment at FAIR (Facility for Antiproton and Ion Research). NeuLAND detects neutrons with energies from 100 to 1000 MeV, featuring a high detection efficiency, a high spatial and time resolution, and a large multi-neutron reconstruction efficiency. This is achieved by a highly granular design of organic scintillators: 3000 individual submodules with a size of 5 × 5 × 250 cm3 are arranged in 30 double planes with 100 submodules each, providing an active area of 250 × 250 cm2 and a total depth of 3 m. The spatial resolution due to the granularity together with a time resolution of 150 ps ensures high-resolution capabilities. In conjunction with calorimetric properties, a multi-neutron reconstruction efficiency of 50% to 70% for four-neutron events will be achieved, depending on both the emission scenario and the boundary conditions allowed for the reconstruction method. We present in this paper the final design of the detector as well as results from test measurements and simulations on which this design is based.
The inclusive charged particle transverse momentum distribution is measured in proton–proton collisions at s=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|η|<0.8) over the transverse momentum range 0.15<pT<10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for |η|<0.8 is 〈pT〉INEL=0.483±0.001 (stat.)±0.007 (syst.) GeV/c and 〈pT〉NSD=0.489±0.001 (stat.)±0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger 〈pT〉 than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.
Nicotinamide adenine dinucleotide (NAD) serves as a cap-like structure on cellular RNAs (NAD-RNAs) in all domains of life including the bacterium Escherichia coli. NAD also acts as a key molecule in phage-host interactions, where bacterial immune systems deplete NAD to abort phage infection. Nevertheless, NAD-RNAs have not yet been identified during phage infections of bacteria and the mechanisms of their synthesis and degradation are unknown in this context. The T4 phage that specifically infects E. coli presents an important model to study phage infections, but a systematic analysis of the presence and dynamics of NAD-RNAs during T4 phage infection is lacking. Here, we investigate the presence of NAD-RNAs during T4 phage infection in a dual manner. By applying time-resolved NAD captureSeq, we identify NAD-capped host and phage transcripts and their dynamic regulation during phage infection. We provide evidence that NAD-RNAs are – as reported earlier – generated by the host RNA polymerase by initiating transcription with NAD at canonical transcription start sites. In addition, we characterize NudE.1 – a T4 phage-encoded Nudix hydrolase – as the first phage-encoded NAD-RNA decapping enzyme. T4 phages carrying inactive NudE.1 display a delayed lysis phenotype. This study investigates for the first time the dual epitranscriptome of a phage and its host, thereby introducing epitranscriptomics as an important field of phage research.