### Refine

#### Year of publication

#### Document Type

- Working Paper (59)
- Conference Proceeding (2)
- Article (1)
- diplomthesis (1)
- Report (1)

#### Has Fulltext

- yes (64)

#### Is part of the Bibliography

- no (64)

#### Keywords

- Lambda-Kalkül (14)
- Formale Semantik (10)
- lambda calculus (7)
- Nebenläufigkeit (6)
- Operationale Semantik (6)
- functional programming (6)
- Programmiersprache (5)
- concurrency (5)
- pi-calculus (5)
- semantics (5)

#### Institute

- Informatik (64)

We present a higher-order call-by-need lambda calculus enriched with constructors, case-expressions, recursive letrec-expressions, a seq-operator for sequential evaluation and a non-deterministic operator amb, which is locally bottom-avoiding. We use a small-step operational semantics in form of a normal order reduction. As equational theory we use contextual equivalence, i.e. terms are equal if plugged into an arbitrary program context their termination behaviour is the same. We use a combination of may- as well as must-convergence, which is appropriate for non-deterministic computations. We evolve different proof tools for proving correctness of program transformations. We provide a context lemma for may- as well as must- convergence which restricts the number of contexts that need to be examined for proving contextual equivalence. In combination with so-called complete sets of commuting and forking diagrams we show that all the deterministic reduction rules and also some additional transformations keep contextual equivalence. In contrast to other approaches our syntax as well as semantics does not make use of a heap for sharing expressions. Instead we represent these expressions explicitely via letrec-bindings.

In this paper we analyze the semantics of a higher-order functional language with concurrent threads, monadic IO and synchronizing variables as in Concurrent Haskell. To assure declarativeness of concurrent programming we extend the language by implicit, monadic, and concurrent futures. As semantic model we introduce and analyze the process calculus CHF, which represents a typed core language of Concurrent Haskell extended by concurrent futures. Evaluation in CHF is defined by a small-step reduction relation. Using contextual equivalence based on may- and should-convergence as program equivalence, we show that various transformations preserve program equivalence. We establish a context lemma easing those correctness proofs. An important result is that call-by-need and call-by-name evaluation are equivalent in CHF, since they induce the same program equivalence. Finally we show that the monad laws hold in CHF under mild restrictions on Haskell’s seq-operator, which for instance justifies the use of the do-notation.

This paper shows the equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in the deterministic call-by-need lambda calculus with letrec. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. Although this property may be a natural one to expect, to the best of our knowledge, this paper is the first one providing a proof. The proof technique is to transfer the contextual approximation into Abramsky's lazy lambda calculus by a fully abstract and surjective translation. This also shows that the natural embedding of Abramsky's lazy lambda calculus into the call-by-need lambda calculus with letrec is an isomorphism between the respective term-models.We show that the equivalence property proven in this paper transfers to a call-by-need letrec calculus developed by Ariola and Felleisen.

We investigate methods and tools for analysing translations between programming languages with respect to observational semantics. The behaviour of programs is observed in terms of may- and must-convergence in arbitrary contexts, and adequacy of translations, i.e., the reﬂection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extension.

Motivated by the question of correctness of a specific implementation of concurrent buffers in the lambda calculus with futures underlying Alice ML, we prove that concurrent buffers and handled futures can correctly encode each other. Correctness means that our encodings preserve and reflect the observations of may- and must-convergence. This also shows correctness wrt. program semantics, since the encodings are adequate translations wrt. contextual semantics. While these translations encode blocking into queuing and waiting, we also provide an adequate encoding of buffers in a calculus without handles, which is more low-level and uses busy-waiting instead of blocking. Furthermore we demonstrate that our correctness concept applies to the whole compilation process from high-level to low-level concurrent languages, by translating the calculus with buffers, handled futures and data constructors into a small core language without those constructs.

Reasoning about the correctness of program transformations requires a notion of program equivalence. We present an observational semantics for the concurrent lambda calculus with futures Lambda(fut), which formalizes the operational semantics of the programming language Alice ML. We show that natural program optimizations, as well as partial evaluation with respect to deterministic rules, are correct for Lambda(fut). This relies on a number of fundamental properties that we establish for our observational semantics.

This note shows that in non-deterministic extended lambda calculi with letrec, the tool of applicative (bi)simulation is in general not usable for contextual equivalence, by giving a counterexample adapted from data flow analysis. It also shown that there is a flaw in a lemma and a theorem concerning finite simulation in a conference paper by the first two authors.

This paper describes a method to treat contextual equivalence in polymorphically typed lambda-calculi, and also how to transfer equivalences from the untyped versions of lambda-calculi to their typed variant, where our specific calculus has letrec, recursive types and is nondeterministic. An addition of a type label to every subexpression is all that is needed, together with some natural constraints for the consistency of the type labels and well-scopedness of expressions. One result is that an elementary but typed notion of program transformation is obtained and that untyped contextual equivalences also hold in the typed calculus as long as the expressions are well-typed. In order to have a nice interaction between reduction and typing, some reduction rules have to be accompanied with a type modification by generalizing or instantiating types.

We show on an abstract level that contextual equivalence in non-deterministic program calculi defined by may- and must-convergence is maximal in the following sense. Using also all the test predicates generated by the Boolean, forall- and existential closure of may- and must-convergence does not change the contextual equivalence. The situation is different if may- and total must-convergence is used, where an expression totally must-converges if all reductions are finite and terminate with a value: There is an infinite sequence of test-predicates generated by the Boolean, forall- and existential closure of may- and total must-convergence, which also leads to an infinite sequence of different contextual equalities.

Various concurrency primitives have been added to sequential programming languages, in order to turn them concurrent. Prominent examples are concurrent buffers for Haskell, channels in Concurrent ML, joins in JoCaml, and handled futures in Alice ML. Even though one might conjecture that all these primitives provide the same expressiveness, proving this equivalence is an open challenge in the area of program semantics. In this paper, we establish a first instance of this conjecture. We show that concurrent buffers can be encoded in the lambda calculus with futures underlying Alice ML. Our correctness proof results from a systematic method, based on observational semantics with respect to may and must convergence.