Refine
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Data sharing (1)
- angler (1)
- bait (1)
- behavior (1)
- evaluation (1)
- global change (1)
- habitat destruction (1)
- invasive species (1)
- land use (1)
- non-native (1)
Communicating research with the public : evaluation of an invasive earthworm education program
(2013)
Ecologists are increasingly encouraged by funding agencies and professional societies to communicate their research with the public. However, most receive relatively little training in how to do this effectively. Furthermore, evaluation of whether such an investment by ecologists actually achieves conservation objectives is rare. We created an education program, involving print, television, radio, and internet media, to increase awareness about earthworm invasions and to discourage anglers from dumping earthworm bait. Using pre- and post-surveys, we evaluated our program’s success in reaching its target audience and in changing knowledge and behavior. Few participants (4.1%) recalled seeing the program material and knowledge of the fact that earthworms are non-native in Alberta remained low (15.8% before, 15.1% after). Further, after being told about the negative effects of earthworms in forests, 46.7% of the anglers surveyed stated they would not change their bait disposal behavior in the future, with many commenting that they did not believe earthworms could be harmful. These results highlight the importance of evaluating education programs, rather than assuming they are successful. Given many participants' doubts that earthworms have negative effects, both regulations and education may be needed to reduce earthworm introductions.
Fungi play pivotal roles in ecosystem functioning, but little is known about their global patterns of diversity, endemicity, vulnerability to global change drivers and conservation priority areas. We applied the high-resolution PacBio sequencing technique to identify fungi based on a long DNA marker that revealed a high proportion of hitherto unknown fungal taxa. We used a Global Soil Mycobiome consortium dataset to test relative performance of various sequencing depth standardization methods (calculation of residuals, exclusion of singletons, traditional and SRS rarefaction, use of Shannon index of diversity) to find optimal protocols for statistical analyses. Altogether, we used six global surveys to infer these patterns for soil-inhabiting fungi and their functional groups. We found that residuals of log-transformed richness (including singletons) against log-transformed sequencing depth yields significantly better model estimates compared with most other standardization methods. With respect to global patterns, fungal functional groups differed in the patterns of diversity, endemicity and vulnerability to main global change predictors. Unlike α-diversity, endemicity and global-change vulnerability of fungi and most functional groups were greatest in the tropics. Fungi are vulnerable mostly to drought, heat, and land cover change. Fungal conservation areas of highest priority include wetlands and moist tropical ecosystems.
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.