Refine
Document Type
- Preprint (10)
- Article (3)
- Conference Proceeding (1)
- Working Paper (1)
Language
- English (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Charge fluctuations (1)
- QGP (1)
- Relativistic heavy-ion collisions (1)
Institute
System size and centrality dependence of the balance function in A + A collisions at √sNN = 17.2 GeV
(2004)
Electric charge correlations were studied for p+p, C+C, Si+Si and centrality selected Pb+Pb collisions at sqrt s_NN = 17.2$ GeV with the NA49 large acceptance detector at the CERN-SPS. In particular, long range pseudo-rapidity correlations of oppositely charged particles were measured using the Balance Function method. The width of the Balance Function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions.
Results are presented on event-by-event electric charge fluctuations in central Pb+Pb collisions at 20, 30, 40, 80 and 158 AGeV. The observed fluctuations are close to those expected for a gas of pions correlated by global charge conservation only. These fluctuations are considerably larger than those calculated for an ideal gas of deconfined quarks and gluons. The present measurements do not necessarily exclude reduced fluctuations from a quark-gluon plasma because these might be masked by contributions from resonance decays.
Results are presented from a search for the decays D0 -> K min pi plus and D0 bar -> K plus pi min in a sample of 3.8x10^6 central Pb-Pb events collected with a beam energy of 158A GeV by NA49 at the CERN SPS. No signal is observed. An upper limit on D0 production is derived and compared to predictions from several models.
Production of Lambda and Antilambda hyperons was measured in central Pb-Pb collisions at 40, 80, and 158 A GeV beam energy on a fixed target. Transverse mass spectra and rapidity distributions are given for all three energies. The Lambda/pi ratio at mid-rapidity and in full phase space shows a pronounced maximum between the highest AGS and 40 A GeV SPS energies, whereas the anti-Lambda}/pi ratio exhibits a monotonic increase. PACS numbers: 25.75.-q
System size dependence of multiplicity fluctuations of charged particles produced in nuclear collisions at 158 A GeV was studied in the NA49 CERN experiment. Results indicate a non-monotonic dependence of the scaled variance of the multiplicity distribution with a maximum for semi-peripheral Pb+Pb interactions with number of projectile participants of about 35. This effect is not observed in a string-hadronic model of nuclear collision HIJING.
The energy dependence of multiplicity fluctuations was studied for the most central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV by the NA49 experiment at the CERN SPS. The multiplicity distribution for negatively and positively charged hadrons is significantly narrower than Poisson one for all energies. No significant structure in energy dependence of the scaled variance of multiplicity fluctuations is observed. The measured scaled variance is lower than the one predicted by the grand-canonical formulation of the hadron-resonance gas model. The results for scaled variance are in approximate agreement with the string-hadronic model UrQMD.
Electric charge correlations were studied for p+p, C+C, Si+Si, and centrality selected Pb+Pb collisions at sqrt[sNN]=17.2 GeV with the NA49 large acceptance detector at the CERN SPS. In particular, long-range pseudorapidity correlations of oppositely charged particles were measured using the balance function method. The width of the balance function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions.
The hadronic final state of central Pb+Pb collisions at 20, 30, 40, 80, and 158 AGeV has been measured by the CERN NA49 collaboration. The mean transverse mass of pions and kaons at midrapidity stays nearly constant in this energy range, whereas at lower energies, at the AGS, a steep increase with beam energy was measured. Compared to p+p collisions as well as to model calculations, anomalies in the energy dependence of pion and kaon production at lower SPS energies are observed. These findings can be explained, assuming that the energy density reached in central A+A collisions at lower SPS energies is sufficient to transform the hot and dense nuclear matter into a deconfined phase.
The hadronic final state of central Pb+Pb collisions at 20, 30, 40, 80, and 158 AGeV has been measured by the CERN NA49 collaboration. The mean transverse mass of pions and kaons at midrapidity stays nearly constant in this energy range, whereas at lower energies, at the AGS, a steep increase with beam energy was measured. Compared to p+p collisions as well as to model calculations, anomalies in the energy dependence of pion and kaon production at lower SPS energies are observed. These findings can be explained, assuming that the energy density reached in central A+A collisions at lower SPS energies is sufficient to force the hot and dense nuclear matter into a deconfined phase.
Particle production in central Pb+Pb collisions was studied with the NA49 large acceptance spectrometer at the CERN SPS at beam energies of 20, 30, 40, 80, and 158 GeV per nucleon. A change of the energy dependence is observed around 30A GeV for the yields of pions and strange particles as well as for the shapes of the transverse mass spectra. At present only a reaction scenario with onset of deconfinement is able to reproduce the measurements.