Refine
Document Type
- Article (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Diagnostik (2)
- Früherkennung (2)
- Mammakarzinom (2)
- Nachsorge (2)
- Richtlinie (2)
- breast cancer (2)
- diagnosis (2)
- follow‑up (2)
- guideline (2)
- screening (2)
Institute
- Geowissenschaften (3)
- Medizin (2)
- Geowissenschaften / Geographie (1)
Ziele: Das Ziel dieser offiziellen Leitlinie, die von der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (DGGG) und der Deutschen Krebsgesellschaft (DKG) publiziert und koordiniert wurde, ist es, die Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms zu optimieren.
Methoden: Der Aktualisierungsprozess der S3-Leitlinie aus 2012 basierte zum einen auf der Adaptation identifizierter Quellleitlinien und zum anderen auf Evidenzübersichten, die nach Entwicklung von PICO-(Patients/Interventions/Control/Outcome-)Fragen, systematischer Recherche in Literaturdatenbanken sowie Selektion und Bewertung der gefundenen Literatur angefertigt wurden. In den interdisziplinären Arbeitsgruppen wurden auf dieser Grundlage Vorschläge für Empfehlungen und Statements erarbeitet, die im Rahmen von strukturierten Konsensusverfahren modifiziert und graduiert wurden.
Empfehlungen: Der Teil 1 dieser Kurzversion der Leitlinie zeigt Empfehlungen zur Früherkennung, Diagnostik und Nachsorge des Mammakarzinoms: Der Stellenwert des Mammografie-Screenings wird in der aktualisierten Leitlinienversion bestätigt und bildet damit die Grundlage der Früherkennung. Neben den konventionellen Methoden der Karzinomdiagnostik wird die Computertomografie (CT) zum Staging bei höherem Rückfallrisiko empfohlen. Die Nachsorgekonzepte beinhalten Untersuchungsintervalle für die körperliche Untersuchung, Ultraschall und Mammografie, während weiterführende Gerätediagnostik und Tumormarkerbestimmungen bei der metastasierten Erkrankung Anwendung finden.
Purpose: The aim of this official guideline coordinated and published by the German Society for Gynecology and Obstetrics (DGGG) and the German Cancer Society (DKG) was to optimize the screening, diagnosis, therapy and follow-up care of breast cancer.
Methods: The process of updating the S3 guideline dating from 2012 was based on the adaptation of identified source guidelines which were combined with reviews of evidence compiled using PICO (Patients/Interventions/Control/Outcome) questions and the results of a systematic search of literature databases and the selection and evaluation of the identified literature. The interdisciplinary working groups took the identified materials as their starting point to develop recommendations and statements which were modified and graded in a structured consensus procedure.
Recommendations: Part 1 of this short version of the guideline presents recommendations for the screening, diagnosis and follow-up care of breast cancer. The importance of mammography for screening is confirmed in this updated version of the guideline and forms the basis for all screening. In addition to the conventional methods used to diagnose breast cancer, computed tomography (CT) is recommended for staging in women with a higher risk of recurrence. The follow-up concept includes suggested intervals between physical, ultrasound and mammography examinations, additional high-tech diagnostic procedures, and the determination of tumor markers for the evaluation of metastatic disease.
Highlights
• Full automatized analysis of teleseismic XKS shear wave splitting.
• Rapid analysis of large seismological data sets.
• Automated window selection and quality classification.
• Application to the USArray Transportable Array including expansion to Alaska.
• Improved statistical evidence and objectivity of derived effective splitting.
Abstract
Recent technological advances have led to community wide use of large-scale seismic experiments which produce seismic data on previously impossible scales. Standard processing procedures thus require automatization to facilitate a fast and objective analysis of the data. Among these, XKS-splitting is an important tool to derive first insights into the Earth's deformation regimes at depth by studying seismic anisotropy. Most often, shear-wave splitting is interpreted to represent crystallographic preferred orientation (CPO) of mantle minerals like olivine as dominating feature and can thus be used as a proxy of mantle flow processes. Here, we introduce an addition to the MATLAB®-based SplitRacer tool box (Reiss and Rümpker 2017) which automatizes the entire XKS-splitting procedure. This is achieved by the automatization of 1) choosing a time window based on spectral analyses and 2) categorization of results based on three different XKS-splitting methods (energy minimization, rotation correlation and splitting intensity). This provides effective and objective results for splitting as well as null-measurement results. This extension allows to use SplitRacer without a graphical interface and introduces a bootstrapping statistics as error estimate of the single layer joint splitting method. The procedures are designed to allow a fast and more objective analysis of a vast amount of data, as produced by recent seismic deployments (e.g. USArray, AlpArray). We test this automatization by applying the analysis to the USArray data set, which has approximately 1900 stations with between two to fifteen years of data. We can reproduce the general pattern of the results from former studies with the more objective automatic analysis. Based on a joint-splitting approach, we approximate the splitting effect at individual stations by a single anisotropic layer. As we include null-measurements as well as a larger data set as previous studies, we can provide improved statistical evidence for these effective splitting parameters.
Highlights
• Subcrustal earthquakes detected beneath Fogo volcano, Cape Verde.
• At the focal depth of 40 km temperatures are likely too high for brittle failure.
• The earthquakes may originate from magma injection into a deep subcrustal reservoir.
• This observation indicates a distinct magma supply system of Fogo volcano.
Abstract
Fogo volcano belongs to the Cape Verde hotspot and its most recent eruption occurred from November 2014 to February 2015. From January to December 2016 we operated a temporary seismic network and array on Fogo and were able to locate 289 earthquakes in total. Array analysis shows that most of the events occur within the crust at distances >25 km near the neighboring island of Brava. However, on 15th August 2016 the network recorded an isolated cluster of >20 earthquakes, 13 of which could be located beneath the southern part of Fogo. The differences between S- and P-wave arrival times at steep incidence clearly indicate focal depths between approximately 38 and 44 km whereas receiver-function analyses place the Moho discontinuity at depths between 11 and 14 km. Thus, the earthquakes are located well within the upper mantle directly beneath Fogo. In view of the elevated upper-mantle temperatures within a hotspot regime, we propose that fracturing induced by magmatic injection is the most likely cause for the observed deep earthquakes.
Constraining the architecture of complex 3D volcanic plumbing systems within active rifts, and their impact on rift processes, is critical for examining the interplay between faulting, magmatism and magmatic fluids in developing rift segments. The Natron basin of the East African Rift System provides an ideal location to study these processes, owing to its recent magmatic-tectonic activity and ongoing active carbonatite volcanism at Oldoinyo Lengai. Here, we report seismicity and fault plane solutions from a 10-month temporary seismic network spanning Oldoinyo Lengai, Naibor Soito volcanic field and Gelai volcano. We locate 6827 earthquakes with ML -0.85 to 3.6, which are related to previous and ongoing magmatic and volcanic activity in the region, as well as regional tectonic extension. We observe seismicity down to ~17 km depth north and south of Oldoinyo Lengai and shallow seismicity (3 - 10 km) beneath Gelai, including two swarms. The deepest seismicity (~down to 20 km) occurs above a previously imaged magma body below Naibor Soito. These seismicity patterns reveal a detailed image of a complex volcanic plumbing system, supporting potential lateral and vertical connections between shallow- and deep-seated magmas, where fluid and melt transport to the surface is facilitated by intrusion of dikes and sills. Focal mechanisms vary spatially. T-axis trends reveal dominantly WNW-ESE extension near Gelai, while strike-slip mechanisms and a radial trend in P-axes are observed in the vicinity of Oldoinyo Lengai. These data support local variations in the state of stress, resulting from a combination of volcanic edifice loading and magma-driven stress changes imposed on a regional extensional stress field. Our results indicate that the southern Natron basin is a segmented rift system, in which fluids preferentially percolate vertically and laterally in a region where strain transfers from a border fault to a developing magmatic rift segment.
The Alpine orogeny is characterized by tectonic sequences of subduction and collision accompanied by break-off events and possibly preceded by a flip of subduction polarity. The tectonic evolution of the transition to the Eastern Alps has thus been under debate. The dense SWATH-D seismic network as a complementary experiment to the AlpArray seismic network provides unprecedented lateral resolution to address this ongoing discussion. We analyze the shear-wave splitting of this data set including stations of the AlpArray backbone in the region to obtain new insights into the deformation at depth from seismic anisotropy. Previous studies indicate two-layer anisotropy in the Eastern Alps. This is supported by the azimuthal pattern of the measured fast axis direction across all analyzed stations. However, the temporary character of the deployment requires a joint analysis of multiple stations to increase the number of events adding complementary information of the anisotropic properties of the mantle. We, therefore, perform a cluster analysis based on a correlation of energy tensors between all stations. The energy tensors are assembled from the remaining transverse energy after the trial correction of the splitting effect from two consecutive anisotropic layers. This leads to two main groups of different two-layer properties, separated approximately at 13°E. We identify a layer with a constant fast axis direction (measured clockwise with respect to north) of about 60° over the whole area, with a possible dip from west to east. The lower layer in the west shows N–S fast direction and the upper layer in the east shows a fast axis of about 115°. We propose two likely scenarios, both accompanied by a slab break-off in the eastern part. The continuous layer can either be interpreted as frozen-in anisotropy with a lithospheric origin or as an asthenospheric flow evading the retreat of the European slab that would precede the break-off event. In both scenarios, the upper layer in the east is a result of a flow through the gap formed in the slab break-off. The N–S direction can be interpreted as an asthenospheric flow driven by the retreating European slab but might also result from a deep-reaching fault-related anisotropy.