Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Anti-inflammatory (1)
- COVID-19 (1)
- Low-dose radiation therapy (1)
- Pneumonia (1)
- SARS-CoV-2 (1)
- anti-inflammatory effects (1)
- changes immune activation (1)
- clinical studies (1)
- discontinuous dose dependency (1)
- immune modulation (1)
Institute
- Medizin (3)
In the current dismal situation of the COVID-19 pandemic, effective management of patients with pneumonia and acute respiratory distress syndrome is of vital importance. Due to the current lack of effective pharmacological concepts, this situation has caused interest in (re)considering historical reports on the treatment of patients with low-dose radiation therapy for pneumonia. Although these historical reports are of low-level evidence per se, hampering recommendations for decision-making in the clinical setting, they indicate effectiveness in the dose range between 0.3 and 1 Gy, similar to more recent dose concepts in the treatment of acute and chronic inflammatory/degenerative benign diseases with, e.g., a single dose per fraction of 0.5 Gy. This concise review aims to critically review the evidence for low-dose radiation treatment of COVID-19 pneumopathy and discuss whether it is worth investigating in the present clinical situation.
Largely unnoticed, all life on earth is constantly exposed to low levels of ionizing radiation. Radon, an imperceptible natural occurring radioactive noble gas, contributes as the largest single fraction to radiation exposure from natural sources. For that reason, radon represents a major issue for radiation protection. Nevertheless, radon is also applied for the therapy of inflammatory and degenerative diseases in galleries and spas to many thousand patients a year. In either case, chronic environmental exposure or therapy, the effect of radon on the organism exposed is still under investigation at all levels of interaction. This includes the physical stage of diffusion and energy deposition by radioactive decay of radon and its progeny and the biological stage of initiating and propagating a physiologic response or inducing cancer after chronic exposure. The purpose of this manuscript is to comprehensively review the current knowledge of radon and its progeny on physical background, associated cancer risk and potential therapeutic effects.
Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose X-irradiation
(2012)
Inflammatory diseases are the result of complex and pathologically unbalanced multicellular interactions. For decades, low-dose X-irradiation therapy (LD-RT) has been clinically documented to exert an anti-inflammatory effect on benign diseases and chronic degenerative disorders. By contrast, experimental studies to confirm the effectiveness and to reveal underlying cellular and molecular mechanisms are still at their early stages. During the last decade, however, the modulation of a multitude of immunological processes by LD-RT has been explored in vitro and in vivo. These include leukocyte/endothelial cell adhesion, adhesion molecule and cytokine/chemokine expression, apoptosis induction, and mononuclear/polymorphonuclear cell metabolism and activity. Interestingly, these mechanisms display comparable dose dependences and dose-effect relationships with a maximum effect in the range between 0.3 and 0.7 Gy, already empirically identified to be most effective in the clinical routine. This review summarizes data and models exploring the mechanisms underlying the immunomodulatory properties of LD-RT that may serve as a prerequisite for further systematic analyses to optimize low-dose irradiation procedures in future clinical practice.