Refine
Year of publication
Language
- English (245)
Has Fulltext
- yes (245)
Is part of the Bibliography
- no (245)
Keywords
- LHC (5)
- e +-e − Experiments (5)
- ALICE experiment (4)
- Hadron-Hadron Scattering (3)
- Spectroscopy (3)
- pp collisions (3)
- Beauty production (2)
- Charm physics (2)
- Exotics (2)
- Heavy Ions (2)
Institute
- Physik (242)
- Frankfurt Institute for Advanced Studies (FIAS) (163)
- Informatik (161)
- Hochschulrechenzentrum (1)
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π0 and K0S production as a function of hadron momentum, normalized by the total cross section of the e+e−→ hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results with a relative hadron energy coverage from 0.1 to 0.9 significantly deviate from several theoretical calculations based on existing fragmentation functions, especially at lower energies.
Using data samples collected with the BESIII detector operating at the BEPCII storage ring, the cross section of the inclusive process e+e−→η+X, normalized by the total cross section of e+e−→hadrons, is measured at eight center-of-mass energy points from 2.0000 GeV to 3.6710 GeV. These are the first measurements with momentum dependence in this energy region. Our measurement shows a significant discrepancy from calculations with the existing fragmentation functions. To address this discrepancy, a new QCD analysis is performed at the next-to-next-to-leading order with hadron mass corrections and higher twist effects, which can explain both the established high-energy data and our measurements reasonably well.
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π0 and K0S production as a function of hadron momentum, normalized by the total cross section of the e+e−→ hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results with a relative hadron energy coverage from 0.1 to 0.9 significantly deviate from several theoretical calculations based on existing fragmentation functions, especially at lower energies.
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π0 and K0S production as a function of hadron momentum, normalized by the total cross section of the e+e−→ hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results with a relative hadron energy coverage from 0.1 to 0.9 significantly deviate from several theoretical calculations based on existing fragmentation functions, especially at lower energies.
We report a search for a heavier partner of the recently observed Zcs(3985)− state, denoted as Z′−cs, in the process e+e−→K+D∗−sD∗0+c.c., based on e+e− collision data collected at the center-of-mass energies of s√=4.661, 4.682 and 4.699 GeV with the BESIII detector. The Z′−cs is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+ recoil-mass spectra, which are probed for a potential contribution from Z′−cs→D∗−sD∗0 (c.c.). We find an excess of Z′−cs→D∗−sD∗0 (c.c.) candidates with a significance of 2.9σ, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±1.1syst.)MeV/c2. As the data set is limited in size, the upper limits are evaluated at the 90% confidence level on the product of the Born cross section and the branching fraction of Z′−cs→D∗−sD∗0, σBorn⋅B at the three energy points, under different assumptions of the Z′−cs mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV. Under various mass and width assumptions, the upper limits of σBorn⋅B are found to lie in the range of 2∼6, 3∼7 and 3∼6 pb at s√=4.661, 4.682 and 4.699 GeV, respectively. The larger data samples that will be collected in the coming years will allow a clearer picture to emerge concerning the existence and nature of the Z′−cs state.
We report a search for a heavier partner of the recently observed Zcs(3985)− state, denoted as Z′−cs, in the process e+e−→K+D∗−sD∗0+c.c., based on e+e− collision data collected at the center-of-mass energies of s√=4.661, 4.682 and 4.699 GeV with the BESIII detector. The Z′−cs is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+ recoil-mass spectra, which are probed for a potential contribution from Z′−cs→D∗−sD∗0 (c.c.). We find an excess of Z′−cs→D∗−sD∗0 (c.c.) candidates with a significance of 2.1σ, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±4.7syst.) MeV/c2. As the data set is limited in size, the upper limits are evaluated at the 90\% confidence level on the product of the Born cross sections (σBorn) and the branching fraction (B) of Z′−cs→D∗−sD∗0, under different assumptions of the Z′−cs mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies. The upper limits of σBorn⋅B are found to be at the level of O(1) pb at each energy. Larger data samples are needed to confirm the Z′−cs state and clarify its nature in the coming years.
We report a search for a heavier partner of the recently observed Zcs(3985)− state, denoted as Z′−cs, in the process e+e−→K+D∗−sD∗0+c.c., based on e+e− collision data collected at the center-of-mass energies of s√=4.661, 4.682 and 4.699 GeV with the BESIII detector. The Z′−cs is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark. A partial-reconstruction technique is used to isolate K+ recoil-mass spectra, which are probed for a potential contribution from Z′−cs→D∗−sD∗0 (c.c.). We find an excess of Z′−cs→D∗−sD∗0 (c.c.) candidates with a significance of 2.1σ, after considering systematic uncertainties, at a mass of (4123.5±0.7stat.±4.7syst.) MeV/c2. As the data set is limited in size, the upper limits are evaluated at the 90\% confidence level on the product of the Born cross sections (σBorn) and the branching fraction (B) of Z′−cs→D∗−sD∗0, under different assumptions of the Z′−cs mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies. The upper limits of σBorn⋅B are found to be at the level of O(1) pb at each energy. Larger data samples are needed to confirm the Z′−cs state and clarify its nature in the coming years.
We report a measurement of the cross section for the process e+e−→π+π−J/ψ around the X(3872) mass in search for the direct formation of e+e−→X(3872) through the two-photon fusion process. No enhancement of the cross section is observed at the X(3872) peak and an upper limit on the product of electronic width and branching fraction of X(3872)→π+π−J/ψ is determined to be Γee×B(X(3872)→π+π−J/ψ)<7.5×10−3eV at 90% confidence level under an assumption of total width of 1.19±0.21 MeV. This is an improvement of a factor of about 17 compared to the previous limit. Furthermore, using the latest result of B(X(3872)→π+π−J/ψ), an upper limit on the electronic width Γee of X(3872) is obtained to be <0.32eV at the 90% confidence level.
Using a sample of (10.09 ± 0.04) × 109 J/ψ decays collected with the BESIII detector, partial wave analyses of the decay J/ψ → γK0SK0Sπ0 are performed within the K0SK0Sπ0 invariant mass region below 1.6 GeV/c2. The covariant tensor amplitude method is used in both mass independent and mass dependent approaches. Both analysis approaches exhibit dominant pseudoscalar and axial vector components, and show good consistency for the other individual components. Furthermore, the mass dependent analysis reveals that the K0SK0 Sπ0 invariant mass spectrum for the pseudoscalar component can be well described with two isoscalar resonant states using relativistic Breit-Wigner model, i.e., the η(1405) with a mass of 1391.7±0.7+11.3 −0.3 MeV/c 2 and a width of 60.8±1.2+5.5 −12.0 MeV, and the η(1475) with a mass of 1507.6±1.6+15.5−32.2 MeV/c2 and a width of 115.8±2.4 +14.8 −10.9 MeV. The first and second uncertainties are statistical and systematic, respectively. Alternate models for the pseudoscalar component are also tested, but the description of the K0SK0Sπ0invariant mass spectrum deteriorates significantly.
Using a data set of electron-positron collisions corresponding to an integrated luminosity of 2.93 fb−1 taken with the BESIII detector at a center-of-mass energy of 3.773 GeV, a search for the baryon (B) and lepton (L) number violating decays D±→n(n¯)e± is performed. No signal is observed and the upper limits on the branching fractions at the 90% confidence level are set to be 1.43×10−5 for the decays D+(−)→n¯(n)e+(−) with Δ|B−L|=0, and 2.91×10−5 for the decays D+(−)→n(n¯)e+(−) with Δ|B−L|=2 , where Δ|B−L| denotes the change in the difference between baryon and lepton numbers.