Refine
Document Type
- Article (9)
- Conference Proceeding (4)
- Doctoral Thesis (1)
Language
- English (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- relativistic hydrodynamics (2)
- transport theory (2)
- Boltzmann equation (1)
- Boltzmann-Gleichung (1)
- FRW spacetime (1)
- Fluid dynamics (1)
- Freeze-out (1)
- Hadron (1)
- Hadron-hadron interactions (1)
- Information theory and computation (1)
Institute
A mechanism for locally density-dependent dynamic parton rearrangement and fusion has been implemented into the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) approach. The same mechanism has been previously built in the Quark Gluon String Model (QGSM). This rearrangement and fusion approach based on parton coalescence ideas enables the description of multi-particle interactions, namely 3 -> 3 and 3 -> 2, between (pre)hadronic states in addition to standard binary interactions. The UrQMD model (v2.3) extended by these additional processes allows to investigate implications of multi-particle interactions on the reaction dynamics of ultrarelativistic heavy ion collisions. The mechanism, its implementation and first results of this investigation are presented and discussed.
We present results on Hanbury Brown-Twiss (HBT) radii extracted from the Ultra-relativistic Molecular Dynamics (UrQMD) approach to relativistic heavy ion collisions. The present investigation provides a comparison of results from pure hadronic transport calculations to a Boltzmann + Hydrodynamic hybrid approach with an intermediate hydrodynamic phase. For the hydrodynamic phase different Equations of State (EoS) have been employed, i.e. bag model, hadron resonance gas and a chiral EoS. The influence of various freeze-out scenarios has been investigated and shown to be negligible if hadronic rescatterings after the hydrodynamic evolution are included. Furthermore, first results of the source tilt from azimuthal sensitive HBT and the direct extraction from the transport model are presented and exhibit a very good agreement with E895 data at AGS.
The effects of the onset of deconfinement on longitudinal and transverse flow are studied. First, we analyze longitudinal pion spectra from Elab = 2A GeV to √sNN = 200 GeV within Landau’s hydrodynamical model and the UrQMD transport approach. From the measured data on the widths of the pion rapidity spectra, we extract the sound velocity c2s in the early stage of the reactions. It is found that the sound velocity has a local minimum (indicating a softest point in the equation of state, EoS) at Ebeam = 30A GeV. This softening of the EoS is compatible with the assumption of the formation of a mixed phase at the onset of deconfinement. Furthermore, the energy excitation function of elliptic flow (v2) from Ebeam = 90A MeV to √sNN = 200 GeV is explored within the UrQMD framework and discussed in the context of the available data. The transverse flow should also be sensitive to changes in the equation of state. Therefore, the underestimation of elliptic flow by the UrQMD model calculation above Elab = 30A GeV might also be explained by assuming a phase transition from a hadron gas to the quark gluon plasma around this energy. This would be consistent with the model calculations, indicating a transition from hadronic matter to “string matter” in this energy range.
In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. To model the dynamical evolution of the collective system assuming local thermal equilibrium ideal hydrodynamics seems to be a good tool. Nowadays, the development of either viscous hydrodynamic codes or hybrid approaches is favoured. For the microscopic description of the hadronic as well as the partonic stage of the evolution transport approaches have beeen successfully applied, since they generate the full phse-space dynamics of all the particles. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. It constitutes an effective solution of the relativistic Boltzmann equation and is restricted to binary collisions of the propagated hadrons. Therefore, the Boltzmann equation and the basic assumptions of this model are introduced. Furthermore, predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies and the new approach leads to reasonable results over the whole energy range. Studies of phase diagram trajectories using hydrodynamics are performed as a first move into the direction of the development of the hybrid approach. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The initial energy and baryon number density distributions are not smooth and not symmetric in any direction and the initial velocity profiles are non-trivial since they are generated by the non-equilibrium transport approach. The fulll (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. For the present work, three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. Either an in the computational frame isochronous freeze-out or an gradual freeze-out that mimics an iso-eigentime criterion. The particle vectors are generated by Monte Carlo methods according to the Cooper-Frye formula and UrQMD takes care of the final decoupling procedure of the particles. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The final pion and proton multiplicities are lower in the hybrid model calculation due to the isentropic hydrodynamic expansion while the yields for strange particles are enhanced due to the local equilibrium in the hydrodynamic evolution. The elliptic flow values at SPS energies are shown to be in line with an ideal hydrodynamic evolution if a proper initial state is used and the final freeze-out proceeds gradually. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent $v_2$ values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from $E_{\rm lab}=2-160A~$GeV. It is observed that the different freeze-out procedures have almost as much influence on the mean transverse mass excitation function as the equation of state. The experimentally observed step-like behaviour of the mean transverse mass excitation function is only reproduced, if a first order phase transition with a large latent heat is applied or the EoS is effectively softened due to non-equilibrium effects in the hadronic transport calculation. The HBT correlation of the negatively charged pion source created in central Pb+Pb collisions at SPS energies are investigated with the hybrid model. It has been found that the latent heat influences the emission of particles visibly and hence the HBT radii of the pion source. The final hadronic interactions after the hydrodynamic freeze-out are very important for the HBT correlation since a large amount of collisions and decays still takes place during this period.
There is little doubt that Quantumchromodynamics (QCD) is the theory which describes strong interaction physics. Lattice gauge simulations of QCD predict that in the m,T plane there is a line where a transition from confined hadronic matter to deconfined quarks takes place. The transition is either a cross over (at low m) or of first order (at high m). It is the goal of the present and future heavy ion experiment at RHIC and FAIR to study this phase transition at different locations in the m,T plane and to explore the properties of the deconfined phase. It is the purpose of this contribution to discuss some of the observables which are considered as useful for this purpose.
We present a systematic study of the normalized symmetric cumulants, NSC(n,m), at the eccentricity level in proton-proton interactions at within a wounded hot spot approach. We focus our attention on the influence of spatial correlations between the proton constituents, in our case gluonic hot spots, on this observable. We notice that the presence of short-range repulsive correlations between the hot spots systematically decreases the values of and in mid- to ultra-central collisions while increases them in peripheral interactions. In the case of we find that, as suggested by data, an anti-correlation of and in ultra-central collisions, i.e. , is possible within the correlated scenario while it never occurs without correlations when the number of gluonic hot spots is set to three. We attribute this fact to the decisive role of correlations on enlarging the probability of interaction topologies that reduce the value of and, eventually, make it negative. Further, we explore the dependence of our conclusions on the number of hot spots, the values of the hot spot radius and the repulsive core distance. Our results add evidence to the idea that considering spatial correlations between the subnucleonic degrees of freedom of the proton may have a strong impact on the initial state properties of proton-proton interactions [1].
Motivated by a recent finding of an exact solution of the relativistic Boltzmann equation in a Friedmann–Robertson–Walker spacetime, we implement this metric into the newly developed transport approach Simulating Many Accelerated Strongly-interacting Hadrons (SMASH). We study the numerical solution of the transport equation and compare it to this exact solution for massless particles. We also compare a different initial condition, for which the transport equation can be independently solved numerically. Very nice agreement is observed in both cases. Having passed these checks for the SMASH code, we study a gas of massive particles within the same spacetime, where the particle decoupling is forced by the Hubble expansion. In this simple scenario we present an analysis of the freeze-out times, as function of the masses and cross sections of the particles. The results might be of interest for their potential application to relativistic heavy-ion collisions, for the characterization of the freeze-out process in terms of hadron properties.
We investigate the long-standing question of the effect of proton-antiproton annihilation on the (anti-)proton yield, while respecting detailed balance for the five-body back-reaction for the first time in a full microscopic description of the late stages of heavy-ion collisions. This is achieved by employing a stochastic collision criterion in a hadronic transport approach (SMASH), which is used to account for the regeneration of (anti-)protons via 5π→p¯p. We investigate Au+Au and Pb+Pb collisions from √sNN=17.3GeV−5.02 TeV in a viscous hybrid approach. Our results show that back-reactions happen for a fraction of 15%–20% of all annihilations, independent of the beam energy or centrality of the system. The inclusion of the back-reaction results in the regeneration of half of the (anti-)proton yield lost to annihilations at midrapidity. We also find that, concerning the multiplicities, treating the back-reaction as a chain of two-body reactions is equivalent to a single 5-to-2 reaction.
A primordial state of matter consisting of free quarks and gluons that existed in the early universe a few microseconds after the Big Bang is also expected to form in high-energy heavy-ion collisions. Determining the equation of state (EoS) of such a primordial matter is the ultimate goal of high-energy heavy-ion experiments. Here we use supervised learning with a deep convolutional neural network to identify the EoS employed in the relativistic hydrodynamic simulations of heavy ion collisions. High-level correlations of particle spectra in transverse momentum and azimuthal angle learned by the network act as an effective EoS-meter in deciphering the nature of the phase transition in quantum chromodynamics. Such EoS-meter is model-independent and insensitive to other simulation inputs including the initial conditions for hydrodynamic simulations.
The goal of heavy ion reactions at low beam energies is to explore the QCD phase diagram at high net baryon chemical potential. To relate experimental observations with a first order phase transition or a critical endpoint, dynamical approaches for the theoretical description have to be developed. In this summary of the corresponding plenary talk, the status of the dynamical modeling including the most recent advances is presented. The remaining challenges are highlighted and promising experimental measurements are pointed out.