### Refine

#### Year of publication

#### Document Type

- Article (15)
- Conference Proceeding (7)
- Doctoral Thesis (1)

#### Language

- English (23)

#### Has Fulltext

- yes (23)

#### Is part of the Bibliography

- no (23)

#### Keywords

- Heavy-ion collisions (2)
- binary neutron star merger (2)
- Boltzmann-Gleichung (1)
- CBM detector (1)
- Chiral phase transition (1)
- FAIR (1)
- GSI (1)
- Hadron (1)
- Hadronic potential (1)
- Hypernuclei (1)

#### Institute

In this talk we presented a novel technique, based on Deep Learning, to determine the impact parameter of nuclear collisions at the CBM experiment. PointNet based Deep Learning models are trained on UrQMD followed by CBMRoot simulations of Au+Au collisions at 10 AGeV to reconstruct the impact parameter of collisions from raw experimental data such as hits of the particles in the detector planes, tracks reconstructed from the hits or their combinations. The PointNet models can perform fast, accurate, event-by-event impact parameter determination in heavy ion collision experiments. They are shown to outperform a simple model which maps the track multiplicity to the impact parameter. While conventional methods for centrality classification merely provide an expected impact parameter distribution for a given centrality class, the PointNet models predict the impact parameter from 2–14 fm on an event-by-event basis with a mean error of −0.33 to 0.22 fm.

The recent discovery of binary neutron star mergers has opened a new and exciting venue of research into hot and dense strongly interacting matter. For the first time, this elusive state of matter, described by the theory of quantum chromo dynamics, can be studied in two very different environments. On the macroscopic scale, in the collisions of neutron stars; and on the microscopic scale, in collisions of heavy ions at particle collider facilities. We will discuss the conditions that are created in these mergers and the corresponding high energy nuclear collisions. This includes the properties of quantum chromo dynamics matter, that is, the expected equation of state as well as expected chemical and thermodynamic properties of this exotic matter. To explore this matter in the laboratory, a new research prospect is available at the Facility for Antiproton and Ion Research, FAIR. The new facility is being constructed adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. The worldwide unique accelerator and experimental facilities of FAIR will open the way for a broad spectrum of unprecedented research supplying a variety of experiments in hadron, nuclear, atomic, and plasma physics as well as biomedical and material science, which will be briefly described.

We study the correlation between the distributions of the net-charge, net-kaon, net-baryon and net-proton number at hadronization and after the final hadronic decoupling by simulating ultra relativistic heavy ion collisions with the hybrid version of the ultrarelativistic quantum molecular dynamics (UrQMD) model. We find that due to the hadronic rescattering these distributions are not strongly correlated. The calculated change of the correlation, during the hadronic expansion stage, does not support the recent paradigm, namely that the measured final moments of the experimentally observed distributions do give directly the values of those distributions at earlier times, when the system had been closer to the QCD crossover.

We compare the reconstructed hadronization conditions in relativistic nuclear collisions in the nucleon–nucleon centre-of-mass energy range 4.7–2760 GeV in terms of temperature and baryon-chemical potential with lattice QCD calculations, by using hadronic multiplicities. We obtain hadronization temperatures and baryon chemical potentials with a fit to measured multiplicities by correcting for the effect of post-hadronization rescattering. The post-hadronization modification factors are calculated by means of a coupled hydrodynamical-transport model simulation under the same conditions of approximate isothermal and isochemical decoupling as assumed in the statistical hadronization model fits to the data. The fit quality is considerably better than without rescattering corrections, as already found in previous work. The curvature of the obtained “true” hadronization pseudo-critical line κ is found to be 0.0048 ± 0.0026, in agreement with lattice QCD estimates; the pseudo-critical temperature at vanishing is found to be 164.3 ± 1.8 MeV.

We study the production of entropy in the context of a nonequilibrium chiral phase transition. The dynamical symmetry breaking is modeled by a Langevin equation for the order parameter coupled to the Bjorken dynamics of a quark plasma. We investigate the impact of dissipation and noise on the entropy and explore the possibility of reheating for crossover and first-order phase transitions, depending on the expansion rate of the fluid. The relative increase in is estimated to range from 10% for a crossover to 100% for a first-order phase transition at low beam energies, which could be detected in the pion-to-proton ratio as a function of beam energy.

Formation of hypermatter and hypernuclei within transport models in relativistic ion collisions
(2015)

Within a combined approach we investigate the main features of the production of hyper-fragments in relativistic heavy-ion collisions. The formation of hyperons is modeled within the UrQMD and HSD transport codes. To describe the hyperon capture by nucleons and nuclear residues a coalescence of baryons (CB) model was developed. We demonstrate that the origin of hypernuclei of various masses can be explained by typical baryon interactions, and that it is similar to processes leading to the production of conventional nuclei. At high beam energies we predict a saturation of the yields of all hyper-fragments, therefore, this kind of reactions can be studied with high yields even at the accelerators of moderate relativistic energies.

In this talk we discuss the effects of the hadronic rescattering on final state observables in high energy nuclear collisions. We do so by employing the UrQMD transport model for a realistic description of the hadronic decoupling process. The rescattering of hadrons modifies every hadronic bulk observable. For example apparent multiplicity of resonances is suppressed as compared to a chemical equilibrium freeze-out model. Stable and unstable particles change their momentum distribution by more than 30% through rescattering. The hadronic rescattering also leads to a substantial decorrelation of the conserved charge distributions. These findings show that it is all but trivial to conclude from the final state observables on the properties of the system at an earlier time where it may have been in or close to local equilibrium.

The beam energy dependence of v4 (the quadrupole moment of the transverse radial flow) is sensitive to the nuclear equation of state (EoS) in mid-central Au + Au collisions at the energy range of 3<sNN−−−−√<30 GeV, which is investigated within the hadronic transport model JAM. Different equations of state, namely, a free hadron gas, a first-order phase transition and a crossover are compared. An enhancement of v4 at sNN−−−−√≈6 GeV is predicted for an EoS with a first-order phase transition. This enhanced v4 flow is driven by both the enhancement of v2 as well as the positive contribution to v4 from the squeeze-out of spectator particles which turn into participants due to the admixture of the strong collective flow in the shocked, compressed nuclear matter.

The aim of this work is to develop an effective equation of state for QCD, having the correct asymptotic degrees of freedom, to be used as input for dynamical studies of heavy ion collisions. We present an approach for modeling an EoS that respects the symmetries underlying QCD, and includes the correct asymptotic degrees of freedom, i.e. quarks and gluons at high temperature and hadrons in the low-temperature limit. We achieve this by including quarks degrees of freedom and the thermal contribution of the Polyakov loop in a hadronic chiral sigma-omega model. The hadronic part of the model is a nonlinear realization of an sigma-omega model. As the fundamental symmetries of QCD should also be present in its hadronic states such an approach is widely used to describe hadron properties below and around Tc. The quarks are introduced as thermal quasi particles, coupling to the Polyakov loop, while the dynamics of the Polyakov loop are controlled by a potential term which is fitted to reproduce pure gauge lattice data. In this model the sigma field serves a the order parameter for chiral restoration and the Polyakov loop as order parameter for deconfinement. The hadrons are suppressed at high densities by excluded volume corrections. As a next step, we introduce our new HQ model equation of state in a microscopic+macroscopic hybrid approach to heavy ion collisions. This hybrid approach is based on the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The present implementation allows to compare pure microscopic transport calculations with hydrodynamic calculations using exactly the same initial conditions and freeze-out procedure. The effects of the change in the underlying dynamics - ideal fluid dynamics vs. non-equilibrium transport theory - are explored. The final pion and proton multiplicities are lower in the hybrid model calculation due to the isentropic hydrodynamic expansion while the yields for strange particles are enhanced due to the local equilibrium in the hydrodynamic evolution. The elliptic and directed flow are shown to be not sensitive to changes in the EoS while the smaller mean free path in the hydrodynamic evolution reflects directly in higher flow results which are consistent with the experimental data. This finding indicates qualitatively that physical mechanisms like viscosity and other non equilibrium effects play an essentially more important role than the EoS when bulk observables like flow are investigated. In the last chapter, results for the thermal production of MEMOs in nucleus-nucleus collisions from a combined micro+macro approach are presented. Multiplicities, rapidity and transverse momentum spectra are predicted for Pb+Pb interaction at different beam energies. The presented excitation functions for various MEMO multiplicities show a clear maximum at the upper FAIR energy regime making this facility the ideal place to study the production of these exotic forms of multistrange objects.

Gravitational waves, electromagnetic radiation, and the emission of high energy particles probe the phase structure of the equation of state of dense matter produced at the crossroad of the closely related relativistic collisions of heavy ions and of binary neutron stars mergers. 3 + 1 dimensional special- and general relativistic hydrodynamic simulation studies reveal a unique window of opportunity to observe phase transitions in compressed baryon matter by laboratory based experiments and by astrophysical multimessenger observations. The astrophysical consequences of a hadron-quark phase transition in the interior of a compact star will be focused within this article. Especially with a future detection of the post-merger gravitational wave emission emanated from a binary neutron star merger event, it would be possible to explore the phase structure of quantum chromodynamics. The astrophysical observables of a hadron-quark phase transition in a single compact star system and binary hybrid star merger scenario will be summarized within this article. The FAIR facility at GSI Helmholtzzentrum allows one to study the universe in the laboratory, and several astrophysical signatures of the quark-gluon plasma have been found in relativistic collisions of heavy ions and will be explored in future experiments.