Refine
Year of publication
Document Type
- Article (53)
- Doctoral Thesis (1)
Has Fulltext
- yes (54)
Is part of the Bibliography
- no (54)
Keywords
- In situ (1)
- Messung (1)
- Schadstofftransport (1)
- Spurengas (1)
- Stratosphäre (1)
Institute
During SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) we performed measurements of a wide range of trace gases with different lifetimes and sink/source characteristics in the northern hemispheric upper troposphere (UT) and lowermost stratosphere (LMS). A large number of in-situ instruments were deployed on board a Learjet 35A, flying at altitudes up to 13.7 km, at times reaching to nearly 380 K potential temperature. Eight measurement campaigns (consisting of a total of 36 flights), distributed over all seasons and typically covering latitudes between 35° N and 75° N in the European longitude sector (10° W–20° E), were performed. Here we present an overview of the project, describing the instrumentation, the encountered meteorological situations during the campaigns and the data set available from SPURT. Measurements were obtained for N2O, CH4, CO, CO2, CFC12, H2, SF6, NO, NOy, O3 and H2O. We illustrate the strength of this new data set by showing mean distributions of the mixing ratios of selected trace gases, using a potential temperature – equivalent latitude coordinate system. The observations reveal that the LMS is most stratospheric in character during spring, with the highest mixing ratios of O3 and NOy and the lowest mixing ratios of N2O and SF6. The lowest mixing ratios of NOy and O3 are observed during autumn, together with the highest mixing ratios of N2O and SF6 indicating a strong tropospheric influence. For H2O, however, the maximum concentrations in the LMS are found during summer, suggesting unique (temperature- and convection-controlled) conditions for this molecule during transport across the tropopause. The SPURT data set is presently the most accurate and complete data set for many trace species in the LMS, and its main value is the simultaneous measurement of a suite of trace gases having different lifetimes and physical-chemical histories. It is thus very well suited for studies of atmospheric transport, for model validation, and for investigations of seasonal changes in the UT/LMS, as demonstrated in accompanying and elsewhere published studies.
During SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) we performed measurements of a wide range of trace gases with different lifetimes and sink/source characteristics in the northern hemispheric upper troposphere (UT) and lowermost stratosphere (LMS). A large number of in-situ instruments were deployed on board a Learjet 35A, flying at altitudes up to 13.7 km, at times reaching to nearly 380 K potential temperature. Eight measurement campaigns (consisting of a total of 36 flights), distributed over all seasons and typically covering latitudes between 35° N and 75° N in the European longitude sector (10° W–20° E), were performed. Here we present an overview of the project, describing the instrumentation, the encountered meteorological situations during the campaigns and the data set available from SPURT. Measurements were obtained for N2O, CH4, CO, CO2, CFC12, H2, SF6, NO, NOy, O3 and H2O. We illustrate the strength of this new data set by showing mean distributions of the mixing ratios of selected trace gases, using a potential temperature – equivalent latitude coordinate system. The observations reveal that the LMS is most stratospheric in character during spring, with the highest mixing ratios of O3 and NOy and the lowest mixing ratios of N2O and SF6. The lowest mixing ratios of NOy and O3 are observed during autumn, together with the highest mixing ratios of N2O and SF6 indicating a strong tropospheric influence. For H2O, however, the maximum concentrations in the LMS are found during summer, suggesting unique (temperature- and convection-controlled) conditions for this molecule during transport across the tropopause. The SPURT data set is presently the most accurate and complete data set for many trace species in the LMS, and its main value is the simultaneous measurement of a suite of trace gases having different lifetimes and physical-chemical histories. It is thus very well suited for studies of atmospheric transport, for model validation, and for investigations of seasonal changes in the UT/LMS, as demonstrated in accompanying and elsewhere published studies.
The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS) has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom). Eleven global models or model variants participated (nine chemical transport models and two chemistry–climate models) by simulating the major natural bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2), over a 20-year period (1993–2012). Except for three model simulations, all others were driven offline by (or nudged to) reanalysed meteorology. The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI) of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences due to emissions and transport processes. Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA's long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements – including high-altitude observations from the NASA Global Hawk platform.
The models generally capture the observed seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model–measurement correlation (r ≥ 0.7) at most sites. In a given model, the absolute model–measurement agreement at the surface is highly sensitive to the choice of emissions. Large inter-model differences are apparent when using the same emission inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11) achieve best agreement to surface CHBr3 observations using the lowest of the three CHBr3 emission inventories tested (similarly, 8 out of 11 models for CH2Br2). In general, the models reproduce observations of CHBr3 and CH2Br2 obtained in the tropical tropopause layer (TTL) at various locations throughout the Pacific well. Zonal variability in VSLS loading in the TTL is generally consistent among models, with CHBr3 (and to a lesser extent CH2Br2) most elevated over the tropical western Pacific during boreal winter. The models also indicate the Asian monsoon during boreal summer to be an important pathway for VSLS reaching the stratosphere, though the strength of this signal varies considerably among models.
We derive an ensemble climatological mean estimate of the stratospheric bromine SGI from CHBr3 and CH2Br2 of 2.0 (1.2–2.5) ppt, ∼ 57 % larger than the best estimate from the most recent World Meteorological Organization (WMO) Ozone Assessment Report. We find no evidence for a long-term, transport-driven trend in the stratospheric SGI of bromine over the simulation period. The transport-driven interannual variability in the annual mean bromine SGI is of the order of ±5 %, with SGI exhibiting a strong positive correlation with the El Niño–Southern Oscillation (ENSO) in the eastern Pacific. Overall, our results do not show systematic differences between models specific to the choice of reanalysis meteorology, rather clear differences are seen related to differences in the implementation of transport processes in the models.
The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS) has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom). Eleven global models or model variants participated, simulating the major natural bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2), over a 20-year period (1993-2012). The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI) of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences
due to emissions and transport processes. Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA’s long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements - including high altitude observations from the NASA Global Hawk platform.
The models generally capture the seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model measurement correlation (r ≥0.7) and a low sensitivity to the choice of emission inventory, at most sites. In a given model, the absolute model-measurement agreement is highly sensitive to the choice of emissions and inter-model differences are also apparent, even when using the same inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11) achieve optimal agreement to surface CHBr3 observations using the lowest of the three CHBr3 emission inventories tested (similarly, 8 out of 11 models for CH2Br2). In general, the models are able to reproduce well observations of CHBr3 and CH2Br2 obtained in the tropical tropopause layer (TTL) at various locations throughout the Pacific. Zonal variability in VSLS loading in the TTL is generally consistent among models, with CHBr3 (and to a lesser extent CH2Br2) most elevated over the tropical West Pacific during boreal winter. The models also indicate the Asian Monsoon during boreal summer to be an important pathway for VSLS reaching the stratosphere, though the strength of this signal varies considerably among models.
We derive an ensemble climatological mean estimate of the stratospheric bromine SGI from CHBr3 and CH2Br2 of 2.0 (1.2-2.5) ppt, ∼57% larger than the best estimate from the most re- cent World Meteorological Organization (WMO) Ozone Assessment Report. We find no evidence for a long-term, transport-driven trend in the stratospheric SGI of bromine over the simulation period. However, transport-driven inter-annual variability in the annual mean bromine SGI is of the order of a ±5%, with SGI exhibiting a strong positive correlation with ENSO in the East Pacific
The transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ = 380K was identified during the HALO aircraft mission TACTS in August and September 2012. In-situ measurements of CO, O3 and N2O during TACTS Flight 2 on the 30 August 2012 show the irreversible mixing of aged with younger (originating from the troposphere) stratospheric air masses within the Ex-UTLS. Backward trajectories calculated with the trajetory module of the CLaMS model indicate that these tropospherically affected air masses originate from the Asian monsoon anticyclone. From the monsoon circulation region these air masses are quasi-isentropically transported above Θ = 380 K into the Ex-UTLS where they subsequently mix with stratospheric air masses. The overall trace gas distribution measured during TACTS shows that this transport pathway has a significant impact on the Ex-UTLS during boreal summer and autumn. This leads to an intensification of the tropospheric influence on the Ex-UTLS with ∆Θ > 30 K (relative to the tropopause) within three weeks during the TACTS mission. In the same time period a weakening of the tropospheric influence on the lowermost stratosphere (LMS) is determined. Therefore, the study shows that the transport of air masses originating from the Asian summer monsoon region within the lower stratosphere above Θ = 380K is of major importance for the change of the chemical composition of the Ex-UTLS from summer to autumn.
The transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ = 380 K was identified during the HALO aircraft mission TACTS in August and September 2012. In situ measurements of CO, O3 and N2O during TACTS flight 2 on 30 August 2012 show the irreversible mixing of aged stratospheric air masses with younger (recently transported from the troposphere) ones within the Ex-UTLS. Backward trajectories calculated with the trajectory module of CLaMS indicate that these tropospherically affected air masses originate from the Asian monsoon anticyclone. These air masses are subsequently transported above potential temperatures Θ = 380 K from the monsoon circulation region into the Ex-UTLS, where they subsequently mix with stratospheric air masses. The overall trace gas distribution measured during TACTS shows that this transport pathway had affected the chemical composition of the Ex-UTLS during boreal summer and autumn 2012. This leads to an intensification of the tropospheric influence on the extratropical lower stratosphere with PV > 8 pvu within 3 weeks during the TACTS mission. During the same time period a weakening of the tropospheric influence on the lowermost stratosphere (LMS) is determined. The study shows that the transport of air masses originating from the Asian summer monsoon region within the lower stratosphere affects the change in the chemical composition of the Ex-UTLS over Europe and thus contributes to the flushing of the LMS during summer 2012.
Im Rahmen des Projektes SPURT (Spurenstofftransport in der Tropopausenregion) als Teil des deutschen Atmosphärenforschungsprogramms AFO 2000 wurden bei 8 Messkampagnen mit insgesamt 36 Flügen innerhalb eines Beobachtungszeitraums von zwei Jahren (Nov. 2001 bis Juli 2003) Spurengasmessungen in dem Breitenbereich zwischen 35°N und 75°N durchgeführt. Für die Messungen der Spurengase N2O, F12, SF6, H2 und CO wurde der vollautomatisierte in-situ GC (Gaschromatograph) GhOST II (Gas Chromatograph for the Observation of Stratospheric Tracers) entwickelt und eingesetzt. Das Ziel dieser Messungen war die Untersuchung der jahreszeitlichen Variabilität der Spurengase in der oberen Troposphäre und untersten Stratosphäre (UT/LMS: Upper Troposphere/Lowermost Stratosphere), um die Transport- und Austauschprozesse in der Tropopausenregion besser zu verstehen. Zur Untersuchung von Transport und Mischung in der UT/LMS wurden die Rückwärtstrajektorien entlang der Flugpfade, die Verteilungen der Tracer N2O, F12, SF6, CO und CO2 (MPI für Chemie in Mainz), die Tracer/Tracer-Korrelationen N2O/F12, N2O/O3 F12/O3 und SF6/O3 und die Verteilungen des aus SF6-Messungen berechnete mittlere Alters der Luft herangezogen. Zusätzlich wurden die simultanen Messungen der beiden Alterstracer CO2 und SF6 genutzt, um die Propagation der Amplitude des troposphärischen CO2-Jahresgangs in die LMS zu bestimmen und daraus mit Hilfe eines empirischen Altersspektrums den Eintrag und die mittlere Transportzeit aus der Troposphäre in die unterste Stratosphäre zu quantifizieren. Grundsätzlich muss die LMS in zwei Bereiche eingeteilt werden – die Übergangsschicht („tropopause following layer“) bis etwa 20-30 K über der potentiellen Temperatur der lokalen Tropopause [Hoor et al., 2004] und die freie LMS oberhalb dieser Schicht. Als wesentliche Unterscheidungsmerkmale beider Bereiche wird die mittlere Transportzeit des Eintrags troposphärischer Luft identifiziert. Aus Trajektorienuntersuchungen und Tracerverteilungen (Kap. 3.4) kann gezeigt werden, dass der Transport in die Übergangsschicht und die Mischungsprozesse in diesem Bereich auf der Zeitskala der mesoskaligen troposphärischen Prozesse ablaufen. Im Gegensatz dazu werden aus der Massenbilanz (Kap. 5.3) mittlere Transportzeiten aus der Troposphäre in die freie LMS von einigen Wochen bis zu mehreren Monaten abgeleitet. Außerdem konnte nachgewiesen werden, dass der troposphärische Eintrag in der freien LMS fast ausschließlich auf quasihorizontale isentrope Einmischung aus den Tropen über die Transportbarriere des Subtropenjets zurückzuführen ist. Nur im Sommer und Herbst konnte auch oberhalb der Übergangsschicht für einzelne Messungen ein Einfluss aus der extratropischen Troposphäre beobachtet werden. Die in dieser Arbeit untersuchten Tracerverteilungen und -korrelationen (Kap. 4) und die Verteilung des mittleren Alters (Kap.5.2) in der LMS zeigen einen Jahresgang mit einem maximalen troposphärischen Einfluss im Oktober und einem maximalen stratosphärischen Einfluss im April. Diese saisonale Charakteristik in der freien LMS kann durch die saisonalen Änderungen des Verhältnisses von Abwärtstransport aus der Overworld und quasihorizontalem Transport aus den Tropen und durch die mit den jeweiligen Transportprozessen assoziierte mittlere Transportzeiten erklärt werden, die aus Massenbilanzrechnungen bestimmt wurden. Es wird gezeigt, dass der überwiegende Eintrag von troposphärischer Luft in die LMS im Sommer und Herbst stattfindet, wobei im Mittel die kürzesten mittleren Transitzeiten (unter 0.3 Jahre) für den August und die längsten Transitzeiten (über 0.6 Jahre) für den Mai berechnet werden. Aus den Ergebnissen wird gefolgert, dass ein ausgeprägter isentroper Austauschprozess über den Subtropenjet im Sommer bis in den Herbst hinein der dominierende troposphärische Einfluss in der LMS bis in den Mai ist. Der Vergleich zwischen SPURT und anderen in der UT/LMS im Zeitraum von 1992 bis 1998 durchgeführten Messkampagnen zeigt einen systematischen Unterschied in den N2O/O3-Korrelationen. Die Zunahme von O3 relativ zu N2O in der LMS ist um etwa 6.5 ppb O3 pro 1 ppb N2O bzw. etwa 40% größer als die Zunahme bei jahreszeitlich vergleichbaren früheren Kampagnen. Durch eine weitergehende Analyse der Messungen, z.B. durch den Vergleich der N2O-Verteilungen in der LMS bei verschiedenen Messkampagnen, und zusätzlichen Informationen aus Satelliten- und Ballonmessungen wird abgeleitet, dass diese Änderung der N2O/O3-Korrelationen im Wesentlichen auf einen im Zeitraum von SPURT stärkeren quasihorizontalen Transport aus den Tropen in die Extratropen im Bereich des so genannten „tropical controlled transition layer“ [Rosenlof et al., 1997] zwischen 16-21 km (bzw. Θ ≈ 380-450 K) zurückzuführen ist. In Kooperation mit B. Bregman wurden mit dem Chemie-Transport-Modell TM5 des KNMI die Verteilungen von SF6 und CO2 in der Troposphäre und Stratosphäre, unter den Zielsetzungen Evaluation des Modelltransports und Erweiterung des Datensatzes von SPURT auf globalen Maßstab, für den Zeitraum 1.1.2000 bis 31.12.2002 modelliert. Dabei konnte gezeigt werden, dass bei Modellstudien zur Evaluation des Transports mit Hilfe von Alterstracern nicht nur troposphärisch monoton steigende Tracer wie SF6 sondern auch saisonal variable Tracer wie CO2 verwendet werden müssen. Bei dem Vergleich der Modellergebnisse des TM5 mit ER2- und SPURTMessungen zeigt sich, dass das Modell zum jetzigen Zeitpunkt in der Lage ist, das mittlere Alter in der unteren Stratosphäre und die SF6- und CO2-Verteilungen in der LMS qualitativ richtig wiederzugeben. Das mittlere Alter in der unteren Stratosphäre wird um etwa 0.5 bis 1 Jahr in den Tropen über- und in den Extratropen unterschätzt. Die vertikalen Gradienten im Modell für SF6 und CO2 in der LMS sind, insbesondere im Winter und Frühjahr, zu gering. Die Amplitude des CO2-Jahresganges in der oberen Troposphäre und in der LMS wird durch das Modell unterschätzt, während der saisonale Verlauf des Jahresganges richtig wiedergegeben wird. Im Moment wird vermutet, dass eine zu starke isentrope Mischung zwischen Tropen und Extratropen und/oder ein zu geringer Aufwärtstransport in der extratropischen Troposphäre im Sommer und Herbst die Ursachen für die beobachteten Abweichungen zwischen Modell und Messung sind.
The total stratospheric organic chlorine and bromine burden was derived from balloon-borne measurements in the tropics (Teresina, Brazil, 5°04´ S, 42°52´ W) in 2005. Whole air samples were collected cryogenically at altitudes between 15 and 34 km. For the first time, we report measurements of a set of 28 chlorinated and brominated substances in the tropical upper troposphere and stratosphere including ten substances with an atmospheric lifetime of less than half a year. The substances were quantified using pre-concentration techniques followed by Gas Chromatography with Mass Spectrometric detection. In the tropical tropopause layer at altitudes between 15 and 17 km we found 1.1–1.4% of the chlorine and 6–8% of the bromine to be present in the form of very short-lived organic compounds. By combining the data with tropospheric reference data and age of air observations the abundances of inorganic chlorine and bromine (Cly and Bry) were derived. At an altitude of 34 km we calculated 3062 ppt of Cly and 17.5 ppt of Bry from the decomposition of both long- and short-lived organic source gases. Furthermore we present indications for the presence of additional organic brominated substances in the tropical upper troposphere and stratosphere.
MIPAS-Envisat is a satellite-borne sensor which measured vertical profiles of a wide range of trace gases from 2002 to 2012 using IR emission spectroscopy. We present geophysical validation of the MIPAS-Envisat operational retrieval (version 6.0) of N2O, CH4, CFC-12, and CFC-11 by the European Space Agency (ESA). The geophysical validation data are derived from measurements of samples collected by a cryogenic whole air sampler flown to altitudes of up to 34 km by means of large scientific balloons. In order to increase the number of coincidences between the satellite and the balloon observations, we applied a trajectory matching technique. The results are presented for different time periods due to a change in the spectroscopic resolution of MIPAS in early 2005. Retrieval results for N2O, CH4, and CFC-12 show partly good agreement for some altitude regions, which differs for the periods with different spectroscopic resolution. The more recent low spectroscopic resolution data above 20 km altitude show agreement with the combined uncertainties, while there is a tendency of the earlier high spectral resolution data set to underestimate these species above 25 km. The earlier high spectral resolution data show a significant overestimation of the mixing ratios for N2O, CH4, and CFC-12 below 20 km. These differences need to be considered when using these data. The CFC-11 results from the operation retrieval version 6.0 cannot be recommended for scientific studies due to a systematic overestimation of the CFC-11 mixing ratios at all altitudes.
MIPAS-Envisat is a satellite-borne sensor which measured vertical profiles of a wide range of trace gases from 2002 to 2012 using IR emission spectroscopy. We present geophysical validation of the MIPAS-Envisat operational retrieval (version 6.0) of N2O, CH4, CFC-12, and CFC-11 by the European Space Agency (ESA). The geophysical validation data are derived from measurements of samples collected by a cryogenic whole air sampler flown to altitudes of up to 34 km by means of large scientific balloons. In order to increase the number of coincidences between the satellite and the balloon observations, we applied a trajectory matching technique. The results are presented for different time periods due to a change in the spectroscopic resolution of MIPAS in early 2005. Retrieval results for N2O, CH4, and CFC-12 show partly good agreement for some altitude regions, which differs for the periods with different spectroscopic resolution. The more recent low spectroscopic resolution data above 20 km altitude show agreement with the combined uncertainties, while there is a tendency of the earlier high spectral resolution data set to underestimate these species above 25 km. The earlier high spectral resolution data show a significant overestimation of the mixing ratios for N2O, CH4, and CFC-12 below 20 km. These differences need to be considered when using these data. The CFC-11 results from the operation retrieval version 6.0 cannot be recommended for scientific studies due to a systematic overestimation of the CFC-11 mixing ratios at all altitudes.