Refine
Document Type
- Article (14)
Language
- English (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Institute
- Geowissenschaften (14)
Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.
The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.
We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in air samples originating from remote regions of the atmosphere and present evidence for its accelerating growth. Observed mixing ratios ranged from below 0.01 ppt in deep firn air to 0.59 ppt in the current northern mid-latitudinal upper troposphere. Firn air samples collected in Greenland were used to reconstruct a history of atmospheric abundance. Year-on-year increases were deduced, with acceleration in the growth rate from 0.029 ppt per year in 2000 to 0.056 ppt per year in 2007. Upper tropospheric air samples provide evidence for a continuing growth until late 2009. Furthermore we calculated a stratospheric lifetime of 370 years from measurements of air samples collected on board high altitude aircraft and balloons. Emission estimates were determined from the reconstructed atmospheric trend and suggest that current "bottom-up" estimates of global emissions for 2005 are too high by a factor of three.
We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in remote regions of the atmosphere and present evidence for its rapid growth. Observed mixing ratios ranged from below 0.01 ppt in deep firn air to 0.59 ppt in the northern mid-latitudinal upper troposphere. Firn air samples collected in Greenland were used to reconstruct a history of atmospheric abundance. Year-on-year increases were deduced, with acceleration in the growth rate from 0.026 ppt per year in 2000 to 0.057 ppt per year in 2007. Upper tropospheric air samples provide evidence for a continuing growth until late 2009. Fur- thermore we calculated a stratospheric lifetime of 370 years from measurements of air samples collected on board high altitude aircraft and balloons. Emission estimates were determined from the reconstructed atmospheric trend and suggest that current "bottom-up" estimates of global emissions for 2005 are too high by more than a factor of three.
Fractional release factors of long-lived halogenated organic compounds in the tropical stratosphere
(2009)
Fractional release factors (FRFs) of organic trace gases are time-independent quantities that influence the calculation of Global Warming Potentials and Ozone Depletion Potentials. We present the first set of vertically resolved FRFs for 15 long-lived halo carbons in the tropical stratosphere up to 34 km altitude. They were calculated from measurements on air samples collected on board balloons and a high altitude aircraft. We compare the derived dependencies of FRFs on the mean stratospheric transit times (the so-called mean ages of air) with similarly derived FRFs originating from measurements at higher latitudes and find significant differences. Moreover a comparison with averaged FRFs currently used by the World Meteorological Organisation revealed the latter to be imprecise measures due to their observed vertical and latitudinal variability. The presented data set could thus be used to improve future ozone level and climate projections.
Fractional release factors of long-lived halogenated organic compounds in the tropical stratosphere
(2010)
Fractional release factors (FRFs) of organic trace gases are time-independent quantities that influence the calculation of Global Warming Potentials and Ozone Depletion Potentials. We present the first set of vertically resolved FRFs for 15 long-lived halocarbons in the tropical stratosphere up to 34 km altitude. They were calculated from measurements on air samples collected on board balloons and a high altitude aircraft. We compare the derived dependencies of FRFs on the mean stratospheric transit times (the so-called mean ages of air) with similarly derived FRFs originating from measurements at higher latitudes and find significant differences. Moreover a comparison with averaged FRFs currently used by the World Meteorological Organisation revealed the limitations of these measures due to their observed vertical and latitudinal variability. The presented data set could be used to improve future ozone level and climate projections.
A comprehensive set of stratospheric balloon and aircraft samples was analyzed for the position-dependent isotopic composition of nitrous oxide (N2O). Results for a total of 220 samples from between 1987 and 2003 are presented, nearly tripling the number of mass-spectrometric N2O isotope measurements in the stratosphere published to date. Cryogenic balloon samples were obtained at polar (Kiruna/Sweden, 68° N), mid-latitude (southern France, 44° N) and tropical sites (Hyderabad/India, 18° N). Aircraft samples were collected with a newly-developed whole air sampler on board of the high-altitude aircraft M55 Geophysica during the EUPLEX 2003 campaign. For mixing ratios above 200 nmol mol−1, relative isotope enrichments (δ values) and mixing ratios display a compact relationship, which is nearly independent of latitude and season and which can be explained equally well by Rayleigh fractionation or mixing. However, for mixing ratios below 200 nmol mol−1 this compact relationship gives way to meridional, seasonal and interannual variations. A comparison to a previously published mid-latitude balloon profile even shows large zonal variations, justifying the use of three-dimensional (3-D) models for further data interpretation.
In general, the magnitude of the apparent fractionation constants (i.e., apparent isotope effects) increases continuously with altitude and decreases from the equator to the North Pole. Only the latter observation can be understood qualitatively by the interplay between the time-scales of N2O photochemistry and transport in a Rayleigh fractionation framework. Deviations from Rayleigh fractionation behavior also occur where polar vortex air mixes with nearly N2O-free upper stratospheric/mesospheric air (e.g., during the boreal winters of 2003 and possibly 1992). Aircraft observations in the polar vortex at mixing ratios below 200 nmol mol−1 deviate from isotope variations expected for both Rayleigh fractionation and two-end-member mixing, but could be explained by continuous weak mixing between intravortex and extravortex air (Plumb et al., 2000). However, it appears that none of the simple approaches described here can capture all features of the stratospheric N2O isotope distribution, again justifying the use of 3-D models. Finally, correlations between 18O/16O and average 15N/14N isotope ratios or between the position-dependent 15N/14N isotope ratios show that photo-oxidation makes a large contribution to the total N2O sink in the lower stratosphere (possibly up to 100% for N2O mixing ratios above 300 nmol mol−1). Towards higher altitudes, the temperature dependence of these isotope correlations becomes visible in the stratospheric observations.
We report measurements of the deuterium content of molecular hydrogen (H2) obtained from a suite of air samples that were collected during a stratospheric balloon flight between 12 and 33 km at 40º N in October 2002. Strong deuterium enrichments of up to 400 permil versus Vienna Standard Mean Ocean Water (VSMOW) are observed, while the H2 mixing ratio remains virtually constant. Thus, as hydrogen is processed through the H2 reservoir in the stratosphere, deuterium is accumulated in H2 . Using box model calculations we investigated the effects of H2 sources and sinks on the stratospheric enrichments. Results show that considerable isotope enrichments in the production of H2 from CH4 must take place, i.e., deuterium is transferred preferentially to H2 during the CH4 oxidation sequence. This supports recent conclusions from tropospheric H2 isotope measurements which show that H2 produced photochemically from CH4 and non-methane hydrocarbons must be enriched in deuterium to balance the tropospheric hydrogen isotope budget. In the absence of further data on isotope fractionations in the individual reaction steps of the CH4 oxidation sequence, this effect cannot be investigated further at present. Our measurements imply that molecular hydrogen has to be taken into account when the hydrogen isotope budget in the stratosphere is investigated.
The isotopic composition of methane in the stratosphere : high-altitude balloon sample measurements
(2011)
The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples) published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs) derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D) and Cl). It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.