Refine
Year of publication
Document Type
- Article (18)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Keywords
- Oxidative stress (3)
- AChE (2)
- Crude oil (2)
- EROD (2)
- Earthworms (2)
- Embryo toxicity (2)
- WAF (2)
- 3,4-DCA; biotransformation (1)
- Acanthocephalan parasites (1)
- Acute toxicity (1)
(Micro)plastics in the aquatic environment are an issue of emerging concern. However, to date, there is considerable lack of knowledge on the abundance and toxicity of plastic debris in aquatic ecosystems, especially with regard to the freshwater situation. In this editorial, we briefly discuss important aspects of the research on environmental (micro)plastics to stimulate research and call for papers.
In the fish embryo toxicity (FET) test with zebrafish (Danio rerio) embryos, 3,4-dichloroaniline (3,4-DCA) is often employed as a positive control substance. Previous studies have characterized bioconcentration and transformation of 3,4-DCA in this test under flow-through conditions. However, the dynamic changes of chemical concentrations in exposure media and embryos were not studied systematically under the commonly used semi-static exposure conditions in multiwell plates. To overcome these limitations, we conducted semi-static exposures experiments where embryolarval zebrafish were exposed to 0.5, 2.0, and 4.0 mg L−1 of 3,4-DCA for up to 120 hpf, with 24-h renewal intervals. During each renewal interval, concentrations of 3,4-DCA were quantified in water samples at 0, 6, 18, and 24 h using high-performance liquid chromatography with diode array detection. Levels of 3,4-DCA in larvae were measured after 120 h exposure. Concentrations of 3,4-DCA in the test vessels decreased rapidly during exposure. Taking these dynamics into account, bioconcentration factors in the present study ranged from 12.9 to 29.8 L kg−1, depending on exposure concentration. In summary, this study contributed to our knowledge of chemical dynamics in the FET test with embryolarval zebrafish, which will aid in defining suitable exposure conditions for future studies.
Genotoxicity assessment is of high relevance for crude and refined petroleum products, since oil compounds are known to cause DNA damage with severe consequences for aquatic biota as demonstrated in long-term monitoring studies. This study aimed at the optimization and evaluation of small-scale higher-throughput assays (Ames fluctuation, micronucleus, Nrf2-CALUX®) covering different mechanistic endpoints as first screening tools for genotoxicity assessment of oils. Cells were exposed to native and chemically dispersed water-accommodated fractions (WAFs) of three oil types varying in their processing degree. Independent of an exogenous metabolic activation system, WAF compounds induced neither base exchange nor frame shift mutations in bacterial strains. However, significantly increased chromosomal aberrations in zebrafish liver (ZF-L) cells were observed. Oxidative stress was indicated for some treatments and was not correlated with observed DNA damage. Application of a chemical dispersant increased the genotoxic potential rather by the increased bioavailability of dissolved and particulate oil compounds. Nonetheless, the dispersant induced a clear oxidative stress response, indicating a relevance for general toxic stress. Results showed that the combination of different in vitro assays is important for a reliable genotoxicity assessment. Especially, the ZF-L capable of active metabolism and DNA repair seems to be a promising model for WAF testing.
Endocrine disrupting compounds (EDCs) emerged as a major concern for water quality in the last decade and have been studied extensively since. Besides typical natural and synthetic estrogens also petroleum product compounds such as some PAHs have been identified as potential EDCs, revealing endocrine disruption to be a relevant mode of action for crude oil toxicity. Hence, in the context of a comprehensive retro- or prospective risk assessment of oil spills the implementation of mechanism-specific toxicity such as endocrine disruption is of high importance. To evaluate the exposure risk for the aquatic biota, research focuses on water-soluble fractions underlying an oil slick that could be simulated via water-accommodated fractions (WAF). Against this background human (ERα-CALUX®) and yeast based (A-YES®) reporter gene bioassays were successfully optimized for the application in estrogenicity evaluation of the water-accommodated fraction (WAF) from a crude oil. Combining different approaches, the estrogenicity of the WAFs from a naphthenic North Sea crude oil was tested with and without the addition of a chemical dispersant addressing specific aspects of estrogenicity including the influence of biotransformation capacities and different salinity conditions. Both the WAF free from droplets (LEWAF) as well as the chemically dispersed WAF (CEWAF) gave indications of an ER-mediated estrogenicity with much stronger ERα agonists in the CEWAF treatment. Resulting estradiol equivalents of the WAFs were above the established effect-based trigger values for both bioassays. Results indicate that the dispersant rather increased the fraction of ER-activating crude oil compounds instead of interacting with the receptor itself. Only slight changes in estrogenic responses were observed when cells capable of active metabolism (T47D) were used instead of cells without endogenous metabolism (U2-OS) in the recombinant ER transactivation CALUX assay. With the yeast cells a higher estrogenic activity was observed in the experiments under elevated salinity conditions (6‰), which was in contrast to previous expectations due to typical decrease in dissolved PAH fraction with increasing salinity (salting-out effect) but might be related to increased cell sensitivity.
In biological systems (cell culture media, cells, body fluids), drugs/toxicants are usually not freely dissolved but partially bound to biomolecules; only a fraction of the chemical is free/unbound (fu). To predict pharmacological effects and toxicity, it is important that the fu of the drug is known. As the differences between free and nominal concentrations are determined by test system parameters (e.g., the protein and lipid content, and the type of surface material), comparison of nominal concentrations between two different new approach methods (NAM) may lead to faulty conclusions. The same problem exists when in vitro concentrations are compared to those in human subjects. Therefore, the respective fu of a chemical in a test system needs to be determined for in vitro-to-in vivo extrapolations (IVIVE). Besides direct measurements, prediction models can help to obtain fu. Here we describe a simplified approach to approximate fu and provide background information on the underlying assumptions. Comparative predictions and measurements of fu of various drugs are shown to exemplify the approach. Basic input data, like protein and lipid concentrations, are also provided. Beyond such test systems data, the only required chemical-specific inputs are the lipophilicity of the candidate drug and its ionization state, as determined by the dissociation constants of its acidic or basic groups. This overview is intended to be used by any lab scientist without specific toxicokinetics training to obtain an estimate of fu in a given cell culture medium.
Background: The environmental impact of pesticides has been an increasingly discussed issue over the last decades. Constant usage of pesticides presents a burden for soil and causes a decrease in its health, including the negative effects on earthworms which are indicators for soil quality. The objective of this research was the assessment of the effects of two insecticides and two herbicides on the earthworm Eisenia andrei. Namely, the following active ingredients and respective commercial preparations were investigated: esfenvalerate (Sumialfa), thiacloprid (Calypso), dimethenamid-p (Frontier) and prosulfocarb (Filon). Lethal concentrations (48 h) of both active ingredient and commercial preparations were determined using the filter paper contact test. Results: The results showed that Calypso and Frontier were significantly more toxic than the active ingredient. Therefore, all further measurements were performed after exposure of earthworms to the commercial preparations of the pesticides. Specifically, several enzymatic biomarkers and multixenobiotic resistance activity were assessed. Additionally, a fluorescence-based assay for the determination of oxidative stress was established. Significant changes were detected for catalase, carboxylesterase and multixenobiotic activities after 48-h exposures. Also, a significant change in oxidative stress parameters could be observed for both Calypso and Frontier. Conclusions: The obtained results show that commercial preparations can be more toxic than the active ingredients, and the formulations being distributed in the environment can affect earthworms on a molecular level already after short exposures. This emphasizes the importance of a more integrated eco-toxicological assessment of commercial pesticide preparations not to underestimate their effects on the environment.
Background: The application of chemical dispersants is a common remediation strategy when accidental oil spills occur in aquatic environments. Breaking down the oil slick into small droplets, dispersants facilitate the increase of particulate and dissolved oil compounds, enhancing the bioavailability of toxic oil constituents. The aim of the present work was to explore the effects of water accommodated fractions (WAF) of a naphthenic North Sea crude oil produced with and without the addition of the chemical dispersant FINASOL OSR 52 to adult zebrafish exposed for 3 and 21 d. Fish were exposed to environmentally relevant concentrations of 5% and 25% WAFOIL (1:200) and to 5% WAFOIL+D (dispersant–oil ratio 1:10) in a semi-static exposure setup. Results: The chemically dispersed WAF presented a 20-fold increase of target polycyclic aromatic hydrocarbons (PAHs) in the water phase compared to the corresponding treatment without dispersant and was the only treatment resulting in markedly bioaccumulation of PAHs in carcass after 21 d compared to the control. Furthermore, only 5% WAFOIL+D caused fish mortality. In general, the undispersed oil treatments did not lead to significant effects compared to control, while the dispersed oil induced significant alterations at gene transcription and enzyme activity levels. Significant up-regulation of biotransformation and oxidative stress response genes (cyp1a, gstp1, sod1 and gpx1a) was recorded in the livers. For the same group, a significant increment in EROD activity was detected in liver along with significant increased GST and CAT activities in gills. The addition of the chemical dispersant also reduced brain AChE activity and showed a potential genotoxic effect as indicated by the increased frequency of micronuclei in erythrocytes after 21 d of exposure. Conclusions: The results demonstrate that the addition of chemical dispersants accentuates the effect of toxic compounds present in oil as it increases PAH bioavailability resulting in diverse alterations on different levels of biological organization in zebrafish. Furthermore, the study emphasizes the importance to combine multilevel endpoints for a reliable risk assessment due to high variable biomarker responses. The present results of dispersant impact on oil toxicity can support decision making for oil spill response strategies.
This report provides a brief review of the 20th annual meeting of the German Language Branch of the Society of Environmental Toxicology and Chemistry (SETAC GLB) held from September 7th to 10th 2015 at ETH (Swiss Technical University) in Zurich, Switzerland. The event was chaired by Inge Werner, Director of the Swiss Centre for Applied Ecotoxicology (Ecotox Centre) Eawag-EPFL, and organized by a team from Ecotox Centre, Eawag, Federal Office of the Environment, Federal Office of Agriculture, and Mesocosm GmbH (Germany). Over 200 delegates from academia, public agencies and private industry of Germany, Switzerland and Austria attended and discussed the current state of science and its application presented in 75 talks and 83 posters. In addition, three invited keynote speakers provided new insights into scientific knowledge ‘brokering’, and—as it was the International Year of Soil—the important role of healthy soil ecosystems. Awards were presented to young scientists for best oral and poster presentations, and for best 2014 master and doctoral theses. Program and abstracts of the meeting (mostly in German) are provided as Additional file 1.
Petroleum products including crude oils and refined distillates are unique environmental pollutants consisting of thousands of compounds with varying physical-chemical properties and resulting toxicity for aquatic biota. Hence, for a reliable risk assessment individual petroleum product toxicity profiles are needed. Furthermore, the influence of oil spill response strategies like the application of chemical dispersants has to be implemented. The present study addressed the toxicity of water-accommodated fractions (WAFs) of two different oil types on fish early life stages on different biological organization levels in the laboratory model species Danio rerio. Experiments with a 3rd generation dispersant used in loading rated resembling the exposure in experiments with chemically dispersed oils were included, enabling a direct comparability of results. This approach is of high importance as especially the investigation of dispersant toxicity in relevant exposure concentrations is rather scarce. Zebrafish embryos were exposed to different WAFs shortly after and up to 120 hour post fertilization (hpf). Besides phenotypic effects including edema and spine deformations, reduced responses to dark stimuli, increased CYP1A activity and marginal AChE inhibition were observed in sublethal effect concentrations. Both oil types had varying strength of toxicity, which did not correlate with corresponding chemical analysis of target PAHs. Chemically dispersed oils induced stronger acute toxicity in zebrafish embryos compared to native (initial) oil exposure, which was further reflected by very low exposure concentrations for biomarker endpoints. Based on a comparison to the dispersant alone, a higher toxicity of dispersed oils was related to a combination of dispersant toxicity and an elevated crude oil compound bioavailability, due to dispersion-related partitioning kinetics. In contrast to LEWAF and CEWAF neither typical morphological effects nor mechanism-specific toxicity were observed for the dispersant alone, indicating narcosis as the responsible cause of effects.
In den vergangenen Jahren gab es verschiedene Initiativen, die auf die unzureichende Fördersituation der Schadstoffbezogenen Umweltwissenschaften in der Bundesrepublik Deutschland aufmerksam gemacht haben. Um eine objektive Analyse über die Fördersituation der Ökotoxikologie und Umweltchemie in Deutschland zu erhalten, wurde eine anonyme Online-Befragung ausgearbeitet. Mit Unterstützung der Society of Environmental Toxicology and Chemistry (SETAC) – German Language Branch und der Gesellschaft Deutscher Chemiker (GDCh) – Fachgruppe für Umweltchemie und Ökotoxikologie wurde eine Einladung zur Teilnahme an der Befragung an alle Mitglieder dieser beiden maßgeblichen Verbände der Ökotoxikologie und Umweltchemie im deutschsprachigen Raum versendet. Nur leitende Mitarbeiter aus den Bereichen Forschung, Behörden und Industrie sollten an der Befragung teilnehmen. Die Befragung gliedert sich in eine Sektion zur sozioökonomischen Charakterisierung der Teilnehmer, eine zur Förderung der Forschung durch die DFG und eine zur Förderung durch andere Geldgeber. Insgesamt haben 71 Wissenschaftler und Wissenschaftlerinnen in leitenden Positionen aus verschiedenen Sparten an der Befragung teilgenommen. Die Ergebnisse zeigen, dass die Teilnehmer als sehr leistungsstark eingestuft werden können. 48,5 % der Befragten hatten bereits einen Antrag bei der DFG gestellt. Ein Drittel der Befragten gaben an, eine Förderung durch die DFG erhalten zu haben. 64 % sind mit der Förderung Schadstoffbezogener Umweltwissenschaften durch die DFG nicht zufrieden, nur 7 % sind zufrieden. Es zeigte sich, dass die Anträge insgesamt sehr heterogen auf verschiedene Fachbereiche der DFG verteilt sind. Geowissenschaften, Wasserforschung und Chemie nehmen die ersten Ränge ein, vor Biologie und Ökologie. Im Gegensatz dazu gaben 91,2 % der Befragten an, dass Sie bereits Drittmittelanträge bei anderen Förderinstitutionen (außer der DFG) gestellt haben, und 83,6 % wurden bereits entsprechende Drittmittelanträge bewilligt. 62,3 % der Befragten sind der Meinung, dass sich die Fördersituation für die Schadstoffbezogenen Umweltwissenschaften in den letzten Jahren insgesamt verschlechtert oder sogar deutlich verschlechtert hat. Der überwiegende Anteil der Befragten (60,9 %) ist mit der Fördersituation durch Drittmittelgeber unzufrieden, nur 10,9 % sind damit zufrieden. Auf die Frage „Ist die Forschungsförderung im europäischen Ausland insgesamt besser als in Deutschland?“ antworteten 30 % mit „ja“, 9 % mit „nein“ und 61 % mit „ich weiß nicht“. Zusammenfassend ergab die Befragung, dass die Fördersituation der Ökotoxikologie und Umweltchemie in Deutschland insgesamt als steigerungsbedürftig, bei der DFG jedoch als problematisch zu bewerten ist. Die auffällige Unterrepräsentation der DFG im Vergleich zu anderen Drittmittelgebern verdeutlicht, dass die wichtigste Förderinstitution Deutschlands den Bedürfnissen der Schadstoffbezogenen Umweltwissenschaften nicht hinreichend Rechnung trägt. Insbesondere die Antworten auf die offenen Fragen bezüglich Verbesserungsmöglichkeiten der Forschungsförderung sollten als Grundlage für einen offenen Dialog der Schadstoffbezogenen Umweltforschung mit den Drittmittelgebern DFG, BMBF und DBU bzw. den entsprechenden Institutionen in CH und A genutzt werden.