Refine
Year of publication
Language
- English (593)
Has Fulltext
- yes (593)
Is part of the Bibliography
- no (593)
Keywords
- Hadron-Hadron scattering (experiments) (12)
- Heavy Ion Experiments (9)
- LHC (9)
- Heavy-ion collisions (6)
- Heavy-ion collision (5)
- ALICE experiment (4)
- ALICE (3)
- Hadron-Hadron Scattering (3)
- Heavy Ions (3)
- pp collisions (3)
Institute
- Frankfurt Institute for Advanced Studies (FIAS) (532)
- Physik (490)
- Informatik (421)
- Hochschulrechenzentrum (1)
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at sNN−−−√ = 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (pT) within −0.5<y<0 and 0.4<pT<2.0 GeV/c. In the most central 0--5\% collisions, a proton cumulant ratio is measured to be C4/C2=−0.85±0.09 (stat.)±0.82 (syst.), which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our C4/C2 in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in C4/C2 is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3\,GeV.
Global polarizations (P) of Λ (Λ¯) hyperons have been observed in non-central heavy-ion collisions. The strong magnetic field primarily created by the spectator protons in such collisions would split the Λ and Λ¯ global polarizations (ΔP=PΛ−PΛ¯<0). Additionally, quantum chromodynamics (QCD) predicts topological charge fluctuations in vacuum, resulting in a chirality imbalance or parity violation in a local domain. This would give rise to an imbalance (Δn=NL−NR⟨NL+NR⟩≠0) between left- and right-handed Λ (Λ¯) as well as a charge separation along the magnetic field, referred to as the chiral magnetic effect (CME). This charge separation can be characterized by the parity-even azimuthal correlator (Δγ) and parity-odd azimuthal harmonic observable (Δa1). Measurements of ΔP, Δγ, and Δa1 have not led to definitive conclusions concerning the CME or the magnetic field, and Δn has not been measured previously. Correlations among these observables may reveal new insights. This paper reports measurements of correlation between Δn and Δa1, which is sensitive to chirality fluctuations, and correlation between ΔP and Δγ sensitive to magnetic field in Au+Au collisions at 27 GeV. For both measurements, no correlations have been observed beyond statistical fluctuations.
The production of the Λ(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at s√=7 TeV and in p–Pb collisions at sNN−−−√=5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel Λ(1520) →pK− and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p–Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons (π, K, K0S, p, Λ) describes the shape of the Λ(1520) transverse momentum distribution up to 3.5 GeV/c in p–Pb collisions. In the framework of this model, this observation suggests that the Λ(1520) resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of Λ(1520) to the yield of the ground state particle Λ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p–Pb collisions on the Λ(1520) yield.
Jet-hadron correlations with respect to the event plane in √sNN = 200 GeV Au+Au collisions in STAR
(2024)
Angular distributions of charged particles relative to jet axes are studied in sNN−−−√ = 200 GeV Au+Au collisions as a function of the jet orientation with respect to the event plane. This differential study tests the expected path-length dependence of energy loss experienced by a hard-scattered parton as it traverses the hot and dense medium formed in heavy-ion collisions. A second-order event plane is used in the analysis as an experimental estimate of the reaction plane formed by the collision impact parameter and the beam direction. Charged-particle jets with 15<pT,jet< 20 and 20<pT,jet< 40 GeV/c were reconstructed with the anti-kT algorithm with radius parameter setting of (R=0.4) in the 20-50\% centrality bin to maximize the initial-state eccentricity of the interaction region. The reaction plane fit method is implemented to remove the flow-modulated background with better precision than prior methods. Yields and widths of jet-associated charged-hadron distributions are extracted in three angular bins between the jet axis and the event plane. The event-plane (EP) dependence is further quantified by ratios of the associated yields in different EP bins. No dependence on orientation of the jet axis with respect to the event plane is seen within the uncertainties in the kinematic regime studied. This finding is consistent with a similar experimental observation by ALICE in sNN−−−√ = 2.76 TeV Pb+Pb collision data.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy s√=510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23≤−t≤0.67 GeV2. We find that a constant slope B does not fit the data in the aforementioned t range, and we obtain a much better fit using a second-order polynomial for B(t). The t dependence of B is determined using six subintervals of t in the STAR measured t range, and is in good agreement with the phenomenological models. The measured elastic differential cross section dσ/dt agrees well with the results obtained at s√=546 GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR t-range is σfidel=462.1±0.9(stat.)±1.1(syst.)±11.6(scale) μb.
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (|y|< 0.7) in Au+Au collisions at sNN−−−√=200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5<pT<9 GeV/c in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in p+p collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (|y|< 0.7) in Au+Au collisions at sNN−−−√=200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5<pT<9 GeV/c in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in p+p collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy s√=510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23≤−t≤0.67 GeV2. We find that a constant slope B does not fit the data in the aforementioned t range, and we obtain a much better fit using a second-order polynomial for B(t). The t dependence of B is determined using six subintervals of t in the STAR measured t range, and is in good agreement with the phenomenological models. The measured elastic differential cross section dσ/dt agrees well with the results obtained at s√=546 GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR t-range is σfidel=462.1±0.9(stat.)±1.1(syst.)±11.6(scale) μb.