Refine
Year of publication
Document Type
- Preprint (13)
- Article (12)
- Conference Proceeding (1)
Language
- English (26)
Has Fulltext
- yes (26)
Is part of the Bibliography
- no (26)
Keywords
- Kollisionen schwerer Ionen (4)
- heavy ion collisions (3)
- Bremsstrahlung (2)
- Meson (2)
- Nambu Jona-Lasinio Modell (2)
- Nambu Jona-Lasinio model (2)
- Quark Materie (2)
- antibaryon (2)
- bremsstrahlung (2)
- equation of state (2)
Background: In this interdisciplinary project, the biological effects of heavy ions are compared to those of X-rays using tissue slice culture preparations from rodents and humans. Advantages of this biological model are the conservation of an organotypic environment and the independency from genetic immortalization strategies used to generate cell lines. Its open access allows easy treatment and observation via live-imaging microscopy. Materials and methods: Rat brains and human brain tumor tissue are cut into 300 micro m thick tissue slices. These slices are cultivated using a membrane-based culture system and kept in an incubator at 37°C until treatment. The slices are treated with X-rays at the radiation facility of the University Hospital in Frankfurt at doses of up to 40 Gy. The heavy ion irradiations were performed at the UNILAC facility at GSI with different ions of 11.4 A MeV and fluences ranging from 0.5–10 x 106 particles/cm². Using 3D-confocal microscopy, cell-death and immune cell activation of the irradiated slices are analyzed. Planning of the irradiation experiments is done with simulation programs developed at GSI and FIAS. Results: After receiving a single application of either X-rays or heavy ions, slices were kept in culture for up to 9d post irradiation. DNA damage was visualized using gamma H2AXstaining. Here, a dose-dependent increase and time-dependent decrease could clearly be observed for the X-ray irradiation. Slices irradiated with heavy ions showed less gamma H2AX-positive cells distributed evenly throughout the slice, even though particles were calculated to penetrate only 90–100 micro m into the slice. Conclusions: Single irradiations of brain tissue, even at high doses of 40 Gy, will result neither in tissue damage visible on a macroscopic level nor necrosis. This is in line with the view that the brain is highly radio-resistant. However, DNA damage can be detected very well in tissue slices using gamma H2AX-immuno staining. Thus, slice cultures are an excellent tool to study radiation-induced damage and repair mechanisms in living tissues.
The biological effects of energetic heavy ions are attracting increasing interest for their applications in cancer therapy and protection against space radiation. The cascade of events leading to cell death or late effects starts from stochastic energy deposition on the nanometer scale and the corresponding lesions in biological molecules, primarily DNA. We have developed experimental techniques to visualize DNA nanolesions induced by heavy ions. Nanolesions appear in cells as “streaks” which can be visualized by using different DNA repair markers. We have studied the kinetics of repair of these “streaks” also with respect to the chromatin conformation. Initial steps in the modeling of the energy deposition patterns at the micrometer and nanometer scale were made with MCHIT and TRAX models, respectively.
We compare different models for hadronic and quark phases of cold baryon rich matter in an attempt to find a deconfinement phase transition between them. For the hadronic phase we consider Walecka type mean field models which describe well the nuclear saturation properties. We also use the variational chain model which takes into account correlation effects. For the quark phase we consider the MIT bag model, the Nambu Jona-Lasinio and the massive quasiparticle models. By comparing pressure as a function of baryon chemical potential we find that crossings of hadronic and quark branches are possible only in some exceptional cases while for most realistic parameter sets these branches do not cross at all. Moreover, the chiral phase transition, often discussed within the framework of QCD motivated models, lies in the region where the quark phases are unstable with respect to the hadronic phase. We discuss possible physical consequences of these findings.
We study properties of compact stars with the deconfinement phase transition in their interiors. The equation of state of cold baryon-rich matter is constructed by combining a relativistic mean-field model for the hadronic phase and the MIT Bag model for the deconfined phase. In a narrow parameter range two sequences of compact stars (twin stars), which differ by the size of the quark core, have been found. We demonstrate the possibility of a rapid transition between the twin stars with the energy release of about 10 ^52 ergs. This transition should be accompanied by the prompt neutrino burst and the delayed gamma-ray burst.
We discuss the possibility of producing a new kind of nuclear system by putting a few antibaryons inside ordinary nuclei. The structure of such systems is calculated within the relativistic mean field model assuming that the nucleon and antinucleon potentials are related by the G parity transformation. The presence of antinucleons leads to decreasing vector potential and increasing scalar potential for the nucleons. As a result, a strongly bound system of high density is formed. Due to the significant reduction of the available phase space the annihilation probability might be strongly suppressed in such systems.
Strong mean meson fields, which are known to exist in normal nuclei, experience a violent deformation in the course of a heavy-ion collision at relativistic energies. This may give rise to a new collective mechanism of the particle production, not reducible to the superposition of elementary nucleon-nucleon collisions.
Chemically non equilibrated quark antiquark matter is studied within the Nambu Jona-Lasinio model. The equations of state of non strange (q = u, d) and strange (q = s) qq systems are calculated in the mean field approximation. The existence of metastable bound states with zero pressure is predicted at finite densities and temperatures T 50 MeV. It is shown that the minimum energy per particle occurs for symmetric systems, with equal densities of quarks and antiquarks. At T = 0 these metastable states have quark number densities of about 0.5 fm 3 for q = u, d and of 1 fm 3 for q = s. A first order chiral phase transition is found at finite densities and temperatures. The critical temperature for this phase transition is approximately 75 MeV (90 MeV) for the non strange (strange) baryon free quark antiquark matter. For realistic choices of parameters, the model does not predict a phase transition in chemically equilibrated systems. Possible decay channels of the metastable qq droplets and their signatures in relativistic heavy ion collisions are discussed.
Properties of dense quark matter in and out of chemical equilibrium are studied within the SU(3) Nambu Jona-Lasinio model. In addition to the 4 fermion scalar and vector terms the model includes also the 6 fermion flavour mixing interaction. First we study a novel form of deconfined matter, meso-matter, which is composed of equal number of quarks and antiquarks. It can be thought of as a strongly compressed meson gas where mesons are melted into their elementary constituents, quarks and antiquarks. Strongly bound states in this quark antiquark matter are predicted for all flavour combinations of qq pairs. The maximum binding energy reaches up to 180 MeV per qq pair for mixtures with about 70% of strange (s¯s) pairs. Equilibrated baryon rich quark matter with various flavour compositions is also studied. In this case only shallow bound states appear in systems with a significant admixture(about 40%) of strange quarks (strangelets). Their binding energies are quite sensitive to the relative strengths of scalar and vector interactions. The common property of all these bound states is that they appear at high particle densities when the chiral symmetry is nearly restored. Thermal properties of meso-matter as well as chemically equilibrated strange quark matter are also investigated. Possible decay modes of these bound states are discussed.
We develop a 1+1 dimensional hydrodynamical model for central heavy-ion collisions at ultrarelativistic energies. Deviations from Bjorken's scaling are taken into account by implementing finite-size profiles for the initial energy density. The calculated rapidity distributions of pions, kaons and antiprotons in central Au+Au collisions at the c.m. energy 200 AGeV are compared with experimental data of the BRAHMS Collaboration. The sensitivity of the results to the choice of the equation of state, the parameters of initial state and the freeze-out conditions is investigated. The best fit of experimental data is obtained for a soft equation of state and Gaussian-like initial profiles of the energy density.