### Refine

#### Year of publication

#### Document Type

- Article (26)
- Preprint (14)
- Conference Proceeding (2)
- Report (1)

#### Language

- English (43)

#### Has Fulltext

- yes (43)

#### Is part of the Bibliography

- no (43)

#### Keywords

#### Institute

Accurate impact parameter determination in a heavy-ion collision is crucial for almost all further analysis. We investigate the capabilities of an artificial neural network in that respect. First results show that the neural network is capable of improving the accuracy of the impact parameter determination based on observables such as the flow angle, the average directed inplane transverse momentum and the difference between transverse and longitudinal momenta. However, further investigations are necessary to discover the full potential of the neural network approach.

We present a theoretical description of nuclear collisions which consists of a three-dimensional fluid-dynamical model, a chemical equilibrium breakup calculation for local light fragment (i.e., p, n, d, t, 3He, and 4He) production, and a final thermal evaporation of these particles. The light fragment cross sections and some properties of the heavy target residues are calculated for the asymmetric system Ne+U at 400 MeV/N. The results of the model calculations are compared with recent experimental data. Several observable signatures of the collective hydrodynamical processes are consistent with the present data. An event-by-event analysis of the flow patterns of the various clusters is proposed which can yield deeper insight into the collision dynamics.

Within a relativistic mean-field theory (RMFT) experimental data on the single-particle spectra of lambda hypernuclei are well reproduced. It is shown that the coupling constants cannot be fixed unambiguously from the single-particle spectra. The stability and structure of multi-lambda hypernuclei is explored on the basis of the RMFT using the coupling constants as determined from the observed single lambda hypernuclear levels. It is predicted that multistrange nuclei exhibit an enhanced interaction radius, which further increases in the case of finite temperatures. We suggest that multi-lambda hypernuclei could be produced in high-energy heavy ions and observed in secondary noncharge-changing reactions. The equation of state of lambda matter and the possibility of pure lambda droplets are also discussed.

The influence of fluctuations of the shape degree of freedom in collisions of deformed nuclei with energies between 0.8 and 2.1 GeV/nucleon is analyzed on the basis of an intranuclear cascade simulation for the strongly deformed systems 46Ti+ 46Ti and 166Er+ 166Er. While there is a considerable sensitivity of the global event variables to the orientation for polarized beams and targets, this dependence disappears in the average over all orientations for impact parameter selected and integrated events. The dependence of the nuclear stopping and thermalization on the size of the system under consideration and on the bombarding energy is also investigated.

Intranuclear cascade calculations and fluid dynamical predictions of the kinetic energy flow are compared for collisions of 40Ca + 40Ca and 238U + 238U. The aspect ratio, R13, as obtained from the global analysis, is independent of the bombarding energy for the intranuclear cascade model. Fluid dynamics, on the other hand, predicts a dramatic increase of R13 at medium energies Elab≲200 MeV/nucleon. In fact, R13(Elab) directly reflects the incompressibility of the nuclear matter and can be used to extract the nuclear equation of stat at high densities. Distortions of the flow tensor due to few nucleon scattering are analyzed. Possible procedures to remove this background from experimental data are discussed.

We analyze the phase structure of the nonlinear mean-field meson theory of baryonic matter (nucleons plus delta resonances). Depending on the choice of the coupling constants, we find three physically distinct phase transitions in this theory: a nucleonic liquid-gas transition in the low temperature, Tc<20 MeV, low density, ρ≃0.5ρ0, regime, a high-temperature (T≃150 MeV) finite density transition from a gas of massive hadrons to a nearly massless baryon, antibaryon plasma, and, third, a strong phase transition from the nucleonic fluid to a resonance-dominated ‘‘delta-matter’’ isomer at ρ>2ρ0 and Tc<50 MeV. All three phase transitions are of first order. It is shown that the occurrence of these different phase transitions depends critically on the coupling constants. Since the production of pions also depends strongly on the coupling constants, it is seen that the equation of state cannot be derived unambiguously from pion data.

Studying Walecka's mean-field theory we find that one can reproduce the observed binding energy and density of nuclear matter within experimental precision in an area characterized by a line in the coupling-constant plane. A part of this line defines systems which exhibit a phase transition around Tc~200 MeV for zero baryon density. The rest corresponds to such systems where the phase transition is absent; in that case a peak appears in the specific heat around T~200 MeV. We interpret these results as indicating that the hadron phase of nuclear matter alone indicates the occurrence of an abrupt change in the bulk properties around ρV~0 and T~200 MeV.

Kinetic energy flow in Nb(400 A MeV) + Nb: evidence for hydrodynamic compression of nuclear matter
(1984)

A kinetic-energy—flow analysis of multiplicity-selected collisions of 93Nb(Elab=400A MeV)+93Nb is performed on the basis of the nuclear fluid dynamical model. The effects of finite particle numbers on the flow tensor are explicitly taken into account. Strong sidewards peaks are predicted in dN/dcosθF, the distribution of event by event flow angles. This is in qualitative agreement with recent data from the "Plastic Ball" electronic detection system. Cascade simulations fail to reproduce the data.

We study a relativistic model of the nucleus consisting of nucleons coupled to mesonic degrees of freedom via an effective Lagrangian whose parameters are determined by a fit to selected nuclear ground-state data. We find that the model allows a very good description of nuclear ground-state properties. Because of the relativistic nature of the model, the spin properties are uniquely fixed. We discuss variations of the parametrization and of the data which suggest that the present fit has exhausted the limits of the mean-field approximation, and discuss extensions which go beyond the mean field.

The properties of symmetric nuclear matter are investigated in the nonlinear relativistic mean field theory of nuclear matter. We consider the constraints imposed by four nuclear ground state properties on the coupling constants and on the equation of state at zero and at finite temperature. We find that the compression constant K(ρ0) as well as the temperature is irrelevant for the stiffness of the equation of state for m*(ρ0)≤0.7. The main point is that the relativistic mean field theory exhibits acausal and unphysical behavior for compressibilities below K(ρ0)=200 MeV. Every set of coupling constants with a negative quartic coupling constant c is unstable against small quantum fluctuations.