Refine
Year of publication
Document Type
- Article (18)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Keywords
- Everolimus (3)
- Kidney transplantation (3)
- Chronic kidney disease (2)
- kidney transplantation (2)
- survival (2)
- Antibody-mediated rejection (1)
- Aortic stiffness (1)
- Biopsy (1)
- COVID-19 (1)
- Cardiovascular magnetic resonance (1)
Institute
- Medizin (18)
- Exzellenzcluster Herz-Lungen-System (2)
- Präsidium (1)
Introduction: As the immunosuppressive potency of 15-deoxyspergualin (DSG) has been shown in the therapy of renal transplant rejection and Wegener's granulomatosis, the intention of this study was to evaluate the safety of DSG in the therapy of lupus nephritis (LN). Methods: Patients with histologically proven active LN after prior treatment with at least one immunosuppressant were treated with 0.5 mg/kg normal body weight/day DSG, injected subcutaneously for 14 days, followed by a break of one week. These cycles were repeated to a maximum of 9 times. Doses of oral corticosteroids were gradually reduced to 7.5 mg/day or lower by cycle 4. Response was measured according to a predefined decision pattern. The dose of DSG was adjusted depending on the efficacy and side effects. Results: 21 patients were included in this phase-I/II study. After the first DSG injection, one patient was excluded from the study due to renal failure. 5 patients dropped out due to adverse events or serious adverse events including fever, leukopenia, oral candidiasis, herpes zoster or pneumonia. 11/20 patients achieved partial (4) or complete responses (7), 8 were judged as treatment failures and one patient was not assessable. 12 patients completed all 9 cycles; in those patients, proteinuria decreased from 5.88g/day to 3.37g/day (P = 0.028), Selena-SLEDAI decreased from 17.6 to 11.7. In 13/20 patients, proteinuria decreased by at least 50%; in 7 patients to less than 1g/day. Conclusions: Although the number of patients was small, we could demonstrate that DSG provides a tolerably safe treatment for LN. The improvement in proteinuria encourages larger controlled trials.
Organspenden retten und verlängern Leben : Prof. Dr. Ingeborg Hauser im Interview mit Dr. Anne Hardy
(2016)
Background: Patients with chronic kidney disease (CKD) have considerable cardiovascular morbidity and mortality. Aortic stiffness is an independent predictor of cardiovascular risk and related to left ventricular remodeling and heart failure. Myocardial fibrosis is the pathophysiological hallmark of the failing heart.
Methods and results: An observational study of consecutive CKD patients (n = 276) undergoing comprehensive clinical cardiovascular magnetic resonance imaging. The relationship between aortic stiffness, myocardial fibrosis, left ventricular remodeling and the severity of chronic kidney disease was examined. Compared to age-gender matched controls with no known kidney disease (n = 242), CKD patients had considerably higher myocardial native T1 and central aortic PWV (p ≪ 0.001), as well as abnormal diastolic relaxation by E/e′ (mean) by echocardiography (p ≪ 0.01). A third of all patients had LGE, with similar proportions for the presence and the (ischaemic and non-ischaemic) pattern between the groups. PWV was strongly associated with and age, NT-proBNP and native T1 in both groups, but not with LGE presence or type; the associations were amplified in severe CKD stages. In multivariate analyses, PWV was independently associated with native T1 in both groups (p ≪ 0.01) with near two-fold increase in adjusted R2 in the presence of CKD (native T1 (10 ms) R2, B(95%CI) CKD vs. non-CKD 0.28, 0.2(0.15–0.25) vs. 0.18, 0.1(0.06–0.15), p ≪ 0.01).
Conclusions: Aortic stiffness and interstitial myocardial fibrosis are interrelated; this association is accelerated in the presence of CKD, but independent of LGE. Our findings reiterate the significant contribution of CKD-related factors to the pathophysiology of cardiovascular remodeling.
The wide range of immunosuppressive therapies and protocols permits tailored planning of the initial regimen according to the immunological risk status of individual patients. Pre-transplant risk assessment can include many factors, but there is no clear consensus on which parameters to take into account, and their relative importance. In general younger patients are known to be at higher risk for acute rejection, compounded by higher rates of non-adherence in adolescents. Donor age and recipient gender do not appear to exert a meaningful effect on risk of rejection per se, but black recipient ethnicity remains a well-established risk factor even under modern immunosuppression regimens. Little difference in risk is now observed between deceased- and living-donor recipients. Immunological risk assessment has developed substantially in recent years. Cross-match testing with cytotoxic analysis has long been supplemented by flow cytometry, but development of solid-phase single-bead antigen testing of solubilized human leukocyte antigens (HLA) to detect donor-specific antibodies (DSA) permits a far more nuanced stratification of immunological risk status, including the different classes and intensities of HLA antibodies Class I and/or II, including HLA-DSA. Immunologic risk evaluation is now often based on a combination of these tests, but other assessments are becoming more widely introduced, such as measurement of non-HLA antibodies against angiotensin type 1 (AT1) receptors or T-cell ELISPOT assay of alloantigen-specific donor. Targeted densensitization protocols can improve immunological risk, notably for DSA-positive patients with negative cytotoxicity and flow cross-match. HLA mismatch remains an important and undisputed risk factor for rejection. Delayed graft function also increases the risk of subsequent acute rejection, and the early regimen can be modified in such cases. Overall, there is a shift towards planning the immunosuppressive regimen based on pre-transplant immunology testing although certain conventional risk factors retain their importance.
Mesenchymal stromal/stem cells (MSCs) are immature multipotent cells, which represent a rare population in the perivascular niche within nearly all tissues. The most abundant source to isolate MSCs is adipose tissue. Currently, perirenal adipose tissue is rarely described as the source of MSCs. MSCs were isolated from perirenal adipose tissue (prASCs) from patients undergoing tumor nephrectomies, cultured and characterized by flow cytometry and their differentiation potential into adipocytes, chondrocytes, osteoblasts and epithelial cells. Furthermore, prASCs were stimulated with lipopolysaccharide (LPS), lipoteichoic acid (LTA) or a mixture of cytokines (cytomix). In addition, prASC susceptibility to human cytomegalovirus (HCMV) was investigated. The expression of inflammatory readouts was estimated by qPCR and immunoassay. HCMV infection was analyzed by qPCR and immunostaining. Characterization of cultured prASCs shows the cells meet the criteria of MSCs and prASCs can undergo trilineage differentiation. Cultured prASCs can be induced to differentiate into epithelial cells, shown by cytokeratin 18 expression. Stimulation of prASCs with LPS or cytomix suggests the cells are capable of initiating an inflammation-like response upon stimulation with LPS or cytokines, whereas, LTA did not induce a significant effect on the readouts (ICAM-1, IL-6, TNFα, MCP-1 mRNA and IL-6 protein). HCMV broadly infects prASCs, showing a viral load dependent cytopathological effect (CPE). Our current study summarizes the isolation and culture of prASCs, clearly characterizes the cells, and demonstrates their immunomodulatory potential and high permissiveness for HCMV
Background: High sensitivity cardiac troponin T (hs-cTnT) and NT-pro-brain natriuretic peptide (NT-pro BNP) are often elevated in chronic kidney disease (CKD) and associated with both cardiovascular remodeling and outcome. Relationship between these biomarkers and quantitative imaging measures of myocardial fibrosis and edema by T1 and T2 mapping remains unknown. Methods: Consecutive patients with established CKD and estimated glomerular filtration rate (eGFR) < 59 ml/min/1.73 m2 (n = 276) were compared to age/sex matched patients with eGFR ≥ 60 ml/min/1.73 m2 (n = 242) and healthy controls (n = 38). Comprehensive cardiovascular magnetic resonance (CMR) with native T1 and T2 mapping, myocardial ischemia and scar imaging was performed with venous sampling immediately prior to CMR. Results: Patients with CKD showed significant cardiac remodeling in comparison with both healthy individuals and non-CKD patients, including a stepwise increase of native T1 and T2 (p < 0.001 between all CKD stages). Native T1 and T2 were the sole imaging markers independently associated with worsening CKD in patients [B = 0.125 (95% CI 0.022–0.235) and B = 0.272 (95% CI 0.164–0.374) with p = 0.019 and < 0.001 respectively]. At univariable analysis, both hs-cTnT and NT-pro BNP significantly correlated with native T1 and T2 in groups with eGFR 30–59 ml/min/1.73 m2 and eGFR < 29 ml/min/1.73 m2 groups, with associations being stronger at lower eGFR (NT-pro BNP (log transformed, lg10): native T1 r = 0.43 and r = 0.57, native T2 r = 0.39 and r = 0.48 respectively; log-transformed hs-cTnT(lg10): native T1 r = 0.23 and r = 0.43, native T2 r = 0.38 and r = 0.58 respectively, p < 0.001 for all, p < 0.05 for interaction). On multivariable analyses, we found independent associations of native T1 with NT-pro BNP [(B = 0.308 (95% CI 0.129–0.407), p < 0.001 and B = 0.334 (95% CI 0.154–0.660), p = 0.002 for eGFR 30–59 ml/min/1.73 m2 and eGFR < 29 ml/min/1.73 m2, respectively] and of T2 with hs-cTnT [B = 0.417 (95% CI 0.219–0.650), p < 0.001 for eGFR < 29 ml/min/1.73 m2]. Conclusions: We demonstrate independent associations between cardiac biomarkers with imaging markers of interstitial expansion, which are CKD-group specific. Our findings indicate the role of diffuse non-ischemic tissue processes, including excess of myocardial fluid in addition to diffuse fibrosis in CKD-related adverse remodeling.
Background: Conversion from calcineurin inhibitor (CNI) therapy to a mammalian target of rapamycin (mTOR) inhibitor following kidney transplantation may help to preserve graft function. Data are sparse, however, concerning the impact of conversion on posttransplant diabetes mellitus (PTDM) or the progression of pre-existing diabetes.
Methods: PTDM and other diabetes-related parameters were assessed post hoc in two large open-label multicenter trials. Kidney transplant recipients were randomized (i) at month 4.5 to switch to everolimus or remain on a standard cyclosporine (CsA)-based regimen (ZEUS, n = 300), or (ii) at month 3 to switch to everolimus, remain on standard CNI therapy or convert to everolimus with reduced-exposure CsA (HERAKLES, n = 497).
Results: There were no significant differences in the incidence of PTDM between treatment groups (log rank p = 0.97 [ZEUS], p = 0.90 [HERAKLES]). The mean change in random blood glucose from randomization to month 12 was also similar between treatment groups in both trials for patients with or without PTDM, and with or without pre-existing diabetes. The change in eGFR from randomization to month 12 showed a benefit for everolimus versus comparator groups in all subpopulations, but only reached significance in larger subgroups (no PTDM or no pre-existing diabetes).
Conclusions: Within the restrictions of this post hoc analysis, including non-standardized diagnostic criteria and limited glycemia laboratory parameters, these data do not indicate any difference in the incidence or severity of PTDM with early conversion from a CsA-based regimen to everolimus, or in the progression of pre-existing diabetes.
Trial registration: clinicaltrials.gov, NCT00154310 (registered September 2005) and NCT00514514 (registered August 2007); EudraCT (2006-007021-32 and 2004-004346-40).
Background: Conversion from calcineurin inhibitor (CNI) therapy to everolimus within 6 months after kidney transplantation improves long-term graft function but can increase the risk of mild biopsy-proven acute cellular rejection (BPAR). We performed a post-hoc analysis of histological data from a randomized trial in order to further analyze histologic information obtained from indication and protocol biopsies up to 5 years after transplantation.
Methods: Biopsy samples obtained up to 5 years post-transplant were analyzed from the randomized ZEUS study, in which kidney transplant patients were randomized at month 4.5 to switch to everolimus (n = 154) or remain on cyclosporine (CsA)-based immunosuppression (n = 146). All patients received mycophenolate and steroids.
Results: At least one investigator-initiated biopsy was undertaken in 53 patients in each group between randomization and year 5, with a mean (SD) of 2.6 (1.7) and 2.2 (1.4) biopsies per patient in the everolimus and CsA groups, respectively. In the everolimus and CsA groups, investigator-initiated biopsies showed (i) BPAR in 12.3 and 7.5% (p = 0.182) of patients, respectively, with episodes graded mild in 22/24 and 18/20 cases (ii) CsA toxicity lesions in 4.5 and 10.3% of patients (p = 0.076) (iii) antibody-mediated rejection in 0.6 and 2.7% of patients (p = 0.204), respectively.
Conclusions: This analysis of histological findings in the ZEUS study to 5 years after kidney transplantation shows no increase in antibody-mediated rejection under everolimus-based therapy with a lower rate of CNI-related toxicity compared to a conventional CsA-based regimen, and confirms the preponderance of mild BPAR seen in the main study after the early switch to CsA-free everolimus therapy.
Trial registration: ClinicalTrials.gov NCT00154310. Date of registration: September 12, 2005.
This is a randomized trial (ATHENA study) in de novo kidney transplant patients to compare everolimus versus mycophenolic acid (MPA) with similar tacrolimus exposure in both groups, or everolimus with concomitant tacrolimus or cyclosporine (CsA), in an unselected population. In this 12-month, multicenter, open-label study, de novo kidney transplant recipients were randomized to everolimus with tacrolimus (EVR/TAC), everolimus with CsA (EVR/CsA) or MPA with tacrolimus (MPA/TAC), with similar tacrolimus exposure in both groups. Non-inferiority of the primary end point (estimated glomerular filtration rate [eGFR] at month 12), assessed in the per-protocol population of 338 patients, was not shown for EVR/TAC or EVR/CsA versus MPA/TAC. In 123 patients with TAC levels within the protocol-specified range, eGFR outcomes were comparable between groups. The mean increase in eGFR during months 1 to 12 post-transplant, analyzed post hoc, was similar with EVR/TAC or EVR/CsA versus MPA/TAC. The incidence of treatment failure (biopsy proven acute rejection, graft loss or death) was not significant for EVR/TAC but significant for EVR/CsA versus MPA/TAC. Most biopsy-proven acute rejection events in this study were graded mild (BANFF IA). There were no differences in proteinuria between groups. Cytomegalovirus and BK virus infection were significantly more frequent with MPA/TAC. Thus, everolimus with TAC or CsA showed comparable efficacy to MPA/TAC in de novo kidney transplant patients. Non-inferiority of renal function, when pre-specified, was not shown, but the mean increase in eGFR from month 1 to 12 was comparable to MPA/TAC.
Background: Immunosuppression with calcineurin inhibitors remains the mainstay of treatment after kidney transplantation; however, long-term use of these drugs may be associated with nephrotoxicity. In this regard, the current approach is to optimise available immunosuppressive regimens to reduce the calcineurin inhibitor dose while protecting renal function without affecting the efficacy. The ATHENA study is designed to evaluate renal function in two regimens: an everolimus and reduced calcineurin inhibitor-based regimen versus a standard treatment protocol with mycophenolic acid and tacrolimus in de novo kidney transplant recipients.
Method/Design: ATHENA is a 12-month, multicentre, open-label, prospective, randomised, parallel-group study in de novo kidney transplant recipients (aged 18 years or older) receiving renal allografts from deceased or living donors. Eligible patients are randomised (1:1:1) prior to transplantation to one of the following three treatment arms: everolimus (starting dose 1.5 mg/day; C0 3–8 ng/mL) with cyclosporine or everolimus (starting dose 3 mg/day; C0 3–8 ng/mL) with tacrolimus or mycophenolic acid (enteric-coated mycophenolate sodium at 1.44 g/day or mycophenolate mofetil at 2 g/day) with tacrolimus; in combination with corticosteroids. All patients receive induction therapy with basiliximab. The primary objective is to demonstrate non-inferiority of renal function (eGFR by the Nankivell formula) in one of the everolimus arms compared with the standard group at month 12 post transplantation. The key secondary objective is to assess the incidence of treatment failure, defined as biopsy-proven acute rejection, graft loss, or death, among the treatment groups. Other objectives include assessment of the individual components of treatment failure, incidence and severity of viral infections, incidence and duration of delayed graft function, incidence of indication biopsies, slow graft function and wound healing complications, and overall safety and tolerability. Exploratory objectives include evaluation of left ventricular hypertrophy assessed by the left ventricular mass index, evolution of human leukocyte antigen and non-human leukocyte antigen antibodies, and a cytomegalovirus substudy.
Discussion: As one of the largest European multicentre kidney transplant studies, ATHENA will determine whether a de novo everolimus-based regimen can preserve renal function versus the standard of care. This study further assesses a number of clinical issues which impact long-term outcomes post transplantation; hence, its results will have a major clinical impact.
Trial registration: Clinicaltrials.gov: NCT01843348, date of registration – 18 April 2013; EUDRACT number: 2011-005238-21, date of registration – 20 March 2012