Refine
Document Type
- Article (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Filmmusik (3)
- 1978> (1)
- Genetics (1)
- Genome-wide association studies (1)
- Martin (1)
- Musical (1)
- SARS-CoV-2 (1)
- Scorsese (1)
- The last waltz <Film (1)
- Viral infection (1)
Institute
- Geowissenschaften (2)
- Extern (1)
- Medizin (1)
Gemessen an der Tatsache, dass die Soundtrack_Cologne 2008 erst ihr fünfjähriges Jubiläum feierte, muss das Kölner Festival/ Symposium zu „Musik und Ton in Film und Medien“ als voller Erfolg gewertet werden. Das Filmmusik-Event in der Rheinmetropole konnte trotz mancher improvisatorischer Einlage und budgetbedingter Einschränkungen bezüglich Inhalt, Vielfalt und Organisation wohl selbst die meisten anspruchsvollen „Fach-Gemüter“ überzeugen und zufrieden stellen. So wundert es – gerade in Hinblick auf die Fülle des Programms sowie die illustre Gästeliste – auch nicht, dass sich die Soundtrack Cologne inzwischen national und international, über brancheninterne Kreise hinaus, zu einer festen kulturellen Institution entwickelt hat.
Musical(-Film)
(2008)
Mit der Einführung des Tonfilms seit dem Ende der 1920er Jahre sich entwickelndes Hollywood-Genre, das in seinen heterogenen Wurzeln unter anderem aus der Music-hall-, Vaudeville- und Broadway-Tradition hervorgegangen ist. Die obligatorischen Gesangs- und Tanznummern unterbrechen die Filmhandlung in der Frühphase zunächst unvermittelt, werden später jedoch in die Narration integriert bzw. gehen motiviert aus dieser hervor und erfüllen vielfältige Funktionen: sie eröffnen irreale „Wunschräume“, nehmen Zukünftiges vorweg, kommentieren das diegetische Geschehen oder machen Subtexte sichtbar.
„This film should be played loud!“ Der ungewöhnlich zwingende Appell in Form der direkten Zuschauer-Adressierung schwirrt noch vor Augen und hallt im Bewusstsein nach. Unter dem Schwarzbild sind Wortfetzen, teils unverständliche Regieanweisungen zu hören, die eine kurze, offen inszenierte Szene mit Rick Danko am Billardtisch vorbereiten. Doch hier ist der Bassist, Violinenspieler und Sänger kein musikalischer Virtuose, sondern nur ein nicht mehr ganz junger Mann von der Straße bei seinem Zeitvertreib. Cut und Zeitsprung.
Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.
The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.