Refine
Document Type
- Article (4)
- Part of a Book (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- ATO (1)
- CD4 binding site (1)
- Datenerhebung (1)
- Episteme (1)
- Epistemologie (1)
- First-line regimen (1)
- HIV (1)
- HIV-1 (1)
- HIV-1 escape restriction (1)
- IGF (1)
Institute
- Medizin (4)
Ceritinib-induced regression of an insulin-like growth factor-driven neuroepithelial brain tumor
(2019)
The insulin-like growth factor (IGF) pathway plays an important role in several brain tumor entities. However, the lack of inhibitors crossing the blood–brain barrier remains a significant obstacle for clinical translation. Here, we targeted the IGF pathway using ceritinib, an off-target inhibitor of the IGF1 receptor (IGF1R) and insulin receptor (INSR), in a pediatric patient with an unclassified brain tumor and a notch receptor 1 (NOTCH1) germline mutation. Pathway analysis of the tumor revealed activation of the sonic hedgehog (SHH), the wingless and integrated-1 (WNT), the IGF, and the Notch pathway. The proliferation of the patient tumor cells (225ZL) was inhibited by arsenic trioxide (ATO), which is an inhibitor of the SHH pathway, by linsitinib, which is an inhibitor of IGF1R and INSR, and by ceritinib. 225ZL expressed INSR but not IGF1R at the protein level, and ceritinib blocked the phosphorylation of INSR. Our first personalized treatment included ATO, but because of side effects, we switched to ceritinib. After 46 days, we achieved a concentration of 1.70 µM of ceritinib in the plasma, and after 58 days, MRI confirmed that there was a response to the treatment. Ceritinib accumulated in the tumor at a concentration of 2.72 µM. Our data suggest ceritinib as a promising drug for the treatment of IGF-driven brain tumors.
Objective: Combination antiretroviral therapy (cART) has markedly increased survival and quality of life in people living with HIV. With the advent of new treatment options, including single-tablet regimens, durability and efficacy of first-line cART regimens are evolving.
Methods: We analyzed data from the prospective multicenter German Clinical Surveillance of HIV Disease (ClinSurv) cohort of the Robert-Koch Institute. Kaplan–Meier and Cox proportional hazards models were run to examine the factors associated with treatment modification. Recovery after treatment initiation was analyzed comparing pre-cART viral load and CD4+ T-cell counts with follow-up data.
Results: We included 8788 patients who initiated cART between 2005 and 2017. The sample population was predominantly male (n = 7040; 80.1%), of whom 4470 (63.5%) were reporting sex with men as the transmission risk factor. Overall, 4210 (47.9%) patients modified their first-line cART after a median time of 63 months (IQR 59–66). Regimens containing integrase strand transfer inhibitors (INSTI) were associated with significantly lower rates of treatment modification (adjusted hazard ratio 0.44; 95% CI 0.39–0.50) compared to protease inhibitor (PI)-based regimens. We found a decreased durability of first-line cART significantly associated with being female, a low CD4+ T-cell count, cART initiation in the later period (2011–2017), being on a multi-tablet regimen (MTR).
Conclusions: Drug class and MTRs are significantly associated with treatment modification. INSTI-based regimens showed to be superior compared to PI-based regimens in terms of durability.
Correction to: Infection (2020) 48:723–733 https://doi.org/10.1007/s15010-020-01469-6. The original version of this article unfortunately contained a mistake. In this article the authors Dirk Schürmann at affiliation Charité, University Medicine, Berlin, Olaf Degen at affiliation University Clinic Hamburg Eppendorf, Hamburg and Heinz-August Horst at affiliation University Hospital Schleswig–Holstein, Kiel, Germany were missing from the author list. The original article has been corrected.
Broadly neutralizing antibodies (bNAbs) represent a promising approach to prevent and treat HIV-1 infection. However, viral escape through mutation of the HIV-1 envelope glycoprotein (Env) limits clinical applications. Here we describe 1-18, a new VH1-46-encoded CD4 binding site (CD4bs) bNAb with outstanding breadth (97%) and potency (GeoMean IC50 = 0.048 μg/mL). Notably, 1-18 is not susceptible to typical CD4bs escape mutations and effectively overcomes HIV-1 resistance to other CD4bs bNAbs. Moreover, mutational antigenic profiling uncovered restricted pathways of HIV-1 escape. Of most promise for therapeutic use, even 1-18 alone fully suppressed viremia in HIV-1-infected humanized mice without selecting for resistant viral variants. A 2.5-Å cryo-EM structure of a 1-18-BG505SOSIP.664 Env complex revealed that these characteristics are likely facilitated by a heavy-chain insertion and increased inter-protomer contacts. The ability of 1-18 to effectively restrict HIV-1 escape pathways provides a new option to successfully prevent and treat HIV-1 infection.