Refine
Document Type
- Article (13)
- Doctoral Thesis (1)
Language
- English (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Institute
Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.
The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.
We report the first atmospheric observations of the Chlorofluorocarbons (CFCs) trifluorochloroethene, 3-chloropentafluoropropene and 4,4-dichlorohexafluoro-1-butene by means of Gas Chromatography with Electron Capture and Mass Spectrometric detection (GC-ECD-MS) in air samples taken at the Taunus Observatory operated by the University of Frankfurt (Main) and the Jungfraujoch High Altitude Research Station in Switzerland. These substances belong to a class of CFCs containing a double bond and are suspected to originate from the production and thermal degradation of widely used fluoropolymers like polychlorotrifluoroethene (PCTFE). Their atmospheric lifetimes are expected to be rather short. A quantitative calibration could only be derived for trifluorochloroethene but not for the other species by now. Thus, we use a relative sensitivity method to get a first indication of the observed atmospheric abundances. Identification was possible because of an air plume containing high concentrations of these substances. We suggest that the abundances found on this occasion originated from a local source. However, we have also observed the novel CFCs in air masses representative of background conditions, though with much lower concentrations. These species and some of their degradation products are toxic and could also be relevant for stratospheric and tropospheric ozone depletion.
Determination of the distribution of halocarbons in the tropical upper troposphere and stratosphere
(2008)
The aim of this thesis was to investigate distributions of 32 volatile chlorinated and/or brominated halocarbons that are currently believed to be present in the tropical upper troposphere and stratosphere and to contribute to stratospheric ozone depletion and also to global warming. For this purpose an analytical system was established, which is capable to measure ultra-low concentrated atmospheric trace gases. A quadrupole Mass Spectrometric (MS) Detector was attached to an existing Gas Chromatograph with pre-concentration system and Electron Capture Detector (ECD). The characterisation of the chromatographic system was significantly enhanced by the subsequent identification of 48 additional volatile organic compounds. Furthermore a Gaussian fit algorithm, which was developed in the workgroup, was applied to the chromatographic signals. This algorithm was proven to reflect peaks quantitatively and to enhance the performance of the integration process – especially the reproducibilities for peaks with a low signal to noise ratio. As it is known that the Electron Capture Detector responds nonlinear the new MS detector was checked for such behaviour and found to respond linear. In logical consistency the complete quantification process including e.g. pre-concentration of trace gases and signal integration can be considered as linear responding within the investigated parameter ranges. Moreover, the long term stability of the targeted halocarbons was proven inside the calibration standard containers over a period of 25 months. Many substances were also found to be stable inside the containers used for storage of air samples but a number of substances showed significant concentration changes. These were mainly CH3Cl (methyl chloride), CH3Br (methyl bromide), CH2Cl2 (dichloromethane), CHCl3 (chloroform), CCl4 (tetrachloromethane), C2Cl4 (tetrachloroethene), CH3CCl3 (methyl chloroform), CH2ClCH2Cl (1,2-dichloroethane) und C2H5Cl (chloroethane). But the number of affected substances and also the corresponding concentration changes varied between the individual containers. A systematic investigation of the influence of possible causes (e.g. air sampling methods, container materials) is recommended. Results from both internal detectors were compared and revealed biases and disadvantages of the ECD caused by its lower selectivity and its nonlinear response behaviour. Consequently the MS detector was chosen for the quantification of atmospheric trace gases. The quantification process was performed relative to externally calibrated air standards. To assess the uncertainties connected with different absolute calibration scales cross-comparisons between calibration standards of three different laboratories were carried out. Most substances’ calibrations agreed within the measurement uncertainties but significant differences were observed for CF2ClBr (H1211), CH3Cl (methyl chloride), CH2Cl2 (dichloromethane), CHCl3 (chloroform), CCl4 (tetrachloromethane) and CH3CCl3 (methyl chloroform). As five of these substances were also observed to show concentration changes inside sample containers it is likely, that such changes are responsible for calibration differences. In addition to the detailed assessment of uncertainties connected with the analytical quantification process a set of air samples was available for measurements. These samples mainly originated from the upper troposphere and lower and middle stratosphere in the tropics and the determined halocarbon quantities were used to investigate their distributions in the respective atmospheric regions. In detail, the altitudinal distributions and interrelations of 17 long-lived halocarbons in the tropical stratosphere were determined and compared with those of other stratospheric regions. Tracer-tracer-correlations of these substances in the tropical stratosphere were found to differ from those in mid- and high-latitudes. Characteristic fit functions relative to CF2Cl2 (F12) which are valid for the tropical stratosphere in 2005 were derived as well as time-independent fit functions of fractional release factors (FRFs) relative to the mean age of air. Both sets of correlations could be used for the parameterisation and evaluation of models and also to reassess the Global Warming Potentials (GWPs) of the corresponding halocarbons which might affect future climate predictions. However, the data set on halocarbons in the tropical stratosphere is still insufficient to investigate the variability of tracer-tracer-correlations and FRFs caused by dynamical and photochemical processes. Therefore it is important for future research to perform additional measurements there and – if possible – to extend the measurements to the upper tropical stratosphere in order to characterise the sink of those halocarbons that are still present in these altitudes. In addition, the amount of chlorine and bromine present in the form of organic compounds inside and above the main stratospheric entrance region (the Tropical Tropopause Layer, TTL) was quantified in the frame of a case study. This was possible because of a cooperation with scientists from the University of East Anglia which carried out measurements of six additional halocarbons leading to a total of 28 quantified target substances. Ten of these substances have short atmospheric lifetimes compared with the mean transport times of tropospheric air to the stratosphere (i.e. lifetimes below 0.5 years) and show non-uniform distributions in the upper troposphere. The contribution of these substances to stratospheric ozone depletion is subject of an ongoing scientific debate. In the performed case study a fraction range of short-lived halocarbons of 6 – 8 % (0.98 – 1.25 ppt) relative to the sum of bromine from organic substances and of 1.1 – 1.4 % (36.6 – 47.1 ppt) for the corresponding sum of chlorine was calculated to enter the stratosphere above Brazil in June 2005. Moreover by combining the data with tropospheric reference data and age of air observations the abundances of inorganic chlorine and bromine (Cly and Bry) were derived. At an altitude of 34 km an amount of 3062 ppt of Cly and 17.5 ppt of Bry from organic source gases was calculated. The latter is significantly lower than Bry mixing ratios inferred from quasisimultaneous BrO measurements at 33 km altitude above Brazil (Dorf, 2005, Dorf et al., 2008). But at the University of East Anglia indications for the presence of unknown brominated organic substances in the TTL were found which might cause this difference. Finally, a major result of this thesis adds to the knowledge of the composition of the troposphere as three Chlorofluorocarbons (CFCs) were first observed. Trifluorochloroethene, 3-chloropentafluoropropene and 4,4-dichlorohexafluoro-1-butene were found in air samples collected at the Taunus Observatory near Frankfurt (Main) and the Jungfraujoch High Altitude Research Station in Switzerland (Laube and Engel, 2008). Identification was possible because of an air plume containing high concentrations of these substances. It is suggested that the abundances found on this occasion originated from a local source. The atmospheric lifetimes of these substances are expected to be rather short as they contain a double bond. A quantitative calibration could only be derived for trifluorochloroethene but not for the other species by now. Thus, a relative sensitivity method was derived to get a first indication of the observed atmospheric abundances. All three CFCs could also be detected in air masses representative of background conditions, though with much lower concentrations. These species and some of their degradation products are toxic and could also be relevant for stratospheric and tropospheric ozone depletion. It is important to find out more about their atmospheric distributions, lifetimes, sinks and sources and their ability to reach the stratosphere to assess their possible influence on the global atmosphere. This will be done in the frame of the project "CLEARFOGG – Checking Layers of the Earths AtmospheRe For halogenated Ozone-depleting and Greenhouse Gases". This research project aims to perform a systematic scan of the atmosphere because there are indications for the presence of a number of halogenated organic compounds which are unknown by now. It was recently decided to be funded by the British National Environmental Research Council and will be carried out at the University of East Anglia mainly by the author of this thesis.
The total stratospheric organic chlorine and bromine burden was derived from balloon-borne measurements in the tropics (Teresina, Brazil, 5°04´ S, 42°52´ W) in 2005. Whole air samples were collected cryogenically at altitudes between 15 and 34 km. For the first time, we report measurements of a set of 28 chlorinated and brominated substances in the tropical upper troposphere and stratosphere including ten substances with an atmospheric lifetime of less than half a year. The substances were quantified using pre-concentration techniques followed by Gas Chromatography with Mass Spectrometric detection. In the tropical tropopause layer at altitudes between 15 and 17 km we found 1.1–1.4% of the chlorine and 6–8% of the bromine to be present in the form of very short-lived organic compounds. By combining the data with tropospheric reference data and age of air observations the abundances of inorganic chlorine and bromine (Cly and Bry) were derived. At an altitude of 34 km we calculated 3062 ppt of Cly and 17.5 ppt of Bry from the decomposition of both long- and short-lived organic source gases. Furthermore we present indications for the presence of additional organic brominated substances in the tropical upper troposphere and stratosphere.
Estimates of the recovery time of stratospheric ozone heavily rely on the exact knowledge of the processes that lead to the decomposition of the relevant halogenated source gases. Crucial parameters in this context are Fractional Release Factors (FRFs) as well as stratospheric lifetimes and Ozone Depletion Potentials (ODPs). We here present data from the analysis of air samples collected between 2009 and 2011 on board research aircraft flying in the mid- and high latitudinal stratosphere and infer the above-mentioned parameters for ten major source gases:CFCl3 (CFC-11), CF2Cl2 (CFC-12), CF2ClCFCl2(CFC-113), CCl4 (carbon tetrachloride),CH3CCl3 (methyl chloroform), CHF2Cl (HCFC-22), CH3CFCl2 (HCFC-141b), CH3CF2Cl (HCFC-142b), CF2ClBr (H-1211), and CF3Br (H-1301). The inferred correlations of their FRFs with mean ages of air reveal less decomposition as compared to previous studies for most compounds. When using the calculated set of FRFs to infer equivalent stratospheric chlorine we find a reduction of more than 20% as compared to the values inferred in the most recent Scientific Assessment of Ozone Depletion by the World Meteorological Organisation (WMO, 2011). We also note that FRFs and their correlations with mean age are not generally time-independent as often assumed. The stratospheric lifetimes were calculated relative to that of CFC-11. Within our uncertainties the inferred ratios between lifetimes agree with those between stratospheric lifetimes from recent WMO reports except for CFC-11, CFC-12 and CH3CCl3. Finally we calculate lower ODPs than WMO for six out of ten compounds with changes most pronounced for the three HCFCs. Collectively these newly calculated values may have important implications for the severity and recovery time of stratospheric ozone loss.
Estimates of the recovery time of stratospheric ozone heavily rely on the exact knowledge of the processes that lead to the decomposition of the relevant halogenated source gases. Crucial parameters in this context are fractional release factors (FRFs) as well as stratospheric lifetimes and ozone depletion potentials (ODPs). We here present data from the analysis of air samples collected between 2009 and 2011 on board research aircraft flying in the mid- and high-latitude stratosphere and infer the above-mentioned parameters for ten major source gases: CFCl3 (CFC-11), CF2Cl2 (CFC-12), CF2ClCFCl2 (CFC-113), CCl4 (carbon tetrachloride), CH3CCl3 (methyl chloroform), CHF2Cl (HCFC-22), CH3CFCl2 (HCFC-141b), CH3CF2Cl (HCFC-142b), CF2ClBr (H-1211), and CF3Br (H-1301). The inferred correlations of their FRFs with mean ages of air reveal less decomposition as compared to previous studies for most compounds. When using the calculated set of FRFs to infer equivalent stratospheric chlorine, we find a reduction of more than 20% as compared to the values inferred in the most recent Scientific Assessment of Ozone Depletion by the World Meteorological Organisation (WMO, 2011). We also note that FRFs and their correlations with mean age are not generally time-independent as often assumed. The stratospheric lifetimes were calculated relative to that of CFC-11. Within our uncertainties the ratios between stratospheric lifetimes inferred here agree with the values in recent WMO reports except for CFC-11, CFC-12 and CH3CCl3. Finally, we calculate lower ODPs than recommended by WMO for six out of ten compounds, with changes most pronounced for the three HCFCs. Collectively these newly calculated values may have important implications for the severity and recovery time of stratospheric ozone loss.
Fractional release factors of long-lived halogenated organic compounds in the tropical stratosphere
(2009)
Fractional release factors (FRFs) of organic trace gases are time-independent quantities that influence the calculation of Global Warming Potentials and Ozone Depletion Potentials. We present the first set of vertically resolved FRFs for 15 long-lived halo carbons in the tropical stratosphere up to 34 km altitude. They were calculated from measurements on air samples collected on board balloons and a high altitude aircraft. We compare the derived dependencies of FRFs on the mean stratospheric transit times (the so-called mean ages of air) with similarly derived FRFs originating from measurements at higher latitudes and find significant differences. Moreover a comparison with averaged FRFs currently used by the World Meteorological Organisation revealed the latter to be imprecise measures due to their observed vertical and latitudinal variability. The presented data set could thus be used to improve future ozone level and climate projections.
We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in remote regions of the atmosphere and present evidence for its rapid growth. Observed mixing ratios ranged from below 0.01 ppt in deep firn air to 0.59 ppt in the northern mid-latitudinal upper troposphere. Firn air samples collected in Greenland were used to reconstruct a history of atmospheric abundance. Year-on-year increases were deduced, with acceleration in the growth rate from 0.026 ppt per year in 2000 to 0.057 ppt per year in 2007. Upper tropospheric air samples provide evidence for a continuing growth until late 2009. Fur- thermore we calculated a stratospheric lifetime of 370 years from measurements of air samples collected on board high altitude aircraft and balloons. Emission estimates were determined from the reconstructed atmospheric trend and suggest that current "bottom-up" estimates of global emissions for 2005 are too high by more than a factor of three.