Refine
Year of publication
Document Type
- Article (27)
- Preprint (3)
- Conference Proceeding (1)
- Working Paper (1)
Has Fulltext
- yes (32)
Is part of the Bibliography
- no (32)
Keywords
- ARDS (1)
- Aging (1)
- Archivierung (1)
- Biodiversity (1)
- COVID-19 (1)
- COVID‐19 (1)
- CVID (1)
- Choice under Risk (1)
- Comparative analysis (1)
- Conservation biology (1)
Institute
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p–Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
Background: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes. Methods: A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. Results: 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict “survival”. Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients’ age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. Conclusions: Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models. Trial registration “ClinicalTrials” (clinicaltrials.gov) under NCT04455451.
Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs.
Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel.
Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1–25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0–88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE- syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%—subcutaneous; 29%—intravenous; 1%—unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy.
Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment.
Importance: The entry of artificial intelligence into medicine is pending. Several methods have been used for the predictions of structured neuroimaging data, yet nobody compared them in this context.
Objective: Multi-class prediction is key for building computational aid systems for differential diagnosis. We compared support vector machine, random forest, gradient boosting, and deep feed-forward neural networks for the classification of different neurodegenerative syndromes based on structural magnetic resonance imaging.
Design, setting, and participants: Atlas-based volumetry was performed on multi-centric T1-weighted MRI data from 940 subjects, i.e., 124 healthy controls and 816 patients with ten different neurodegenerative diseases, leading to a multi-diagnostic multi-class classification task with eleven different classes.
Interventions: N.A.
Main outcomes and measures: Cohen’s kappa, accuracy, and F1-score to assess model performance.
Results: Overall, the neural network produced both the best performance measures and the most robust results. The smaller classes however were better classified by either the ensemble learning methods or the support vector machine, while performance measures for small classes were comparatively low, as expected. Diseases with regionally specific and pronounced atrophy patterns were generally better classified than diseases with widespread and rather weak atrophy.
Conclusions and relevance: Our study furthermore underlines the necessity of larger data sets but also calls for a careful consideration of different machine learning methods that can handle the type of data and the classification task best.
Die Universitätsbibliothek Leipzig (UBL) steht zur Sächsischen Akademie der Wissenschaften in einer speziellen Beziehung: Sie ist deren Archivbibliothek. Außerdem versorgt sie natürlich die Wissenschaftler der Akademie mit der von ihnen gewünschten wissenschaftlichen Literatur. Seit dem 19. Jahrhundert – dem Jahrhundert der Gründung der Sächsischen Akademie der Wissenschaften zu Leipzig – hat die Universitätsbibliothek Leipzig eine große Zahl an Schätzen des Weltschrifterbes erhalten, die sie bis heute bewahrt. Nun kommen im 21. Jahrhundert neue technische Möglichkeiten hinzu, und eine kleine Revolution ist perfekt: Alte Texte können in neuen Medien präsentiert bzw. veröffentlicht werden, die Erschließungsleistung der Bibliothekare kann unmittelbar für die Forschung bereitgestellt werden, darüber hinaus sind die Originale im Tresor der Bibliotheca Albertina gerade durch ihre erheblich verbesserte Zugänglichkeit über digitale Sekundärformen besser geschützt. Die laufenden Projekte der Universitätsbibliothek kann man seit Anfang 2008 auf der Homepage der UBL (www.ub.uni-leipzig.de) eigens aufgelistet finden (s. dort unter ›Projekte‹). Sie lassen sich in vier Gruppen gliedern und sollen im Folgenden kurz erläutert werden. Neuere Projektvorhaben werde ich im Anschluss daran erläutern. Die vier thematisch-kulturellen Gruppen, innerhalb deren Katalogisierungs-, Erschließungs- und Forschungsleistungen an der Universitätsbibliothek Leipzig erbracht werden, sind 1. Texte der Antike, 2. Texte und Textträger des Mittelalters, 3. Texte aus dem orientalischen Kulturraum und 4. Quellentexte zur Wissenschaftsgeschichte der Neuzeit.
Antisynthetase syndrome (ASSD) is a rare clinical condition that is characterized by the occurrence of a classic clinical triad, encompassing myositis, arthritis, and interstitial lung disease (ILD), along with specific autoantibodies that are addressed to different aminoacyl tRNA synthetases (ARS). Until now, it has been unknown whether the presence of a different ARS might affect the clinical presentation, evolution, and outcome of ASSD. In this study, we retrospectively recorded the time of onset, characteristics, clustering of triad findings, and survival of 828 ASSD patients (593 anti-Jo1, 95 anti-PL7, 84 anti-PL12, 38 anti-EJ, and 18 anti-OJ), referring to AENEAS (American and European NEtwork of Antisynthetase Syndrome) collaborative group’s cohort. Comparisons were performed first between all ARS cases and then, in the case of significance, while using anti-Jo1 positive patients as the reference group. The characteristics of triad findings were similar and the onset mainly began with a single triad finding in all groups despite some differences in overall prevalence. The “ex-novo” occurrence of triad findings was only reduced in the anti-PL12-positive cohort, however, it occurred in a clinically relevant percentage of patients (30%). Moreover, survival was not influenced by the underlying anti-aminoacyl tRNA synthetase antibodies’ positivity, which confirmed that antisynthetase syndrome is a heterogeneous condition and that antibody specificity only partially influences the clinical presentation and evolution of this condition.
Die Covid-19-Pandemie hat das universitäre Leben seit dem Sommersemester 2020 auf den Kopf gestellt. Digitales Arbeiten von zu Hause aus, e-Learning und Video-Konferenzen prägen seither Forschung, Studium und Lehre. Wir haben Studierende, Lehrende, Mitarbeiterinnen und Mitarbeiter aus ganz unterschiedlichen Gebieten unseres Fachbereichs drei Fragen zu ihrem Arbeitsalltag zwischen Ausnahmezustand und „neuer Normalität“ gestellt.
1. Inwieweit hat die Pandemie Ihren (Arbeits-/Studien-) Alltag verändert?
2. Welche Rolle spielen dabei digitale Medien? (auch im Vergleich zur Zeit vor der Pandemie)
3. Für die Zeit „nach Corona“: Was nehmen Sie mit? Worauf freuen Sie sich?
In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January–February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between −27 and −6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.