Refine
Document Type
- Preprint (12)
- Article (7)
- Part of Periodical (2)
Language
- English (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Crossover (2)
- Event-by-event fluctuation (2)
- Higher-order cumulant (2)
- QCD phase diagram (2)
- Zoological Survey of India (2)
- taxonomy (2)
- transfer (2)
- B-slope (1)
- Coalescence (1)
- Critical point (1)
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
With the STAR experiment at the BNL Relativisic Heavy Ion Collider, we characterize sNN−−−√ = 200 GeV p+Au collisions by event activity (EA) measured within the pseudorapidity range eta in [-5, -3.4] in the Au-going direction and report correlations between this EA and hard- and soft- scale particle production at midrapidity (η ∈ [-1, 1]). At the soft scale, charged particle production in low-EA p+Au collisions is comparable to that in p+p collisions and increases monotonically with increasing EA. At the hard scale, we report measurements of high transverse momentum (pT) jets in events of different EAs. In contrast with the soft particle production, high-pT particle production and EA are found to be inversely related. To investigate whether this is a signal of jet quenching in high-EA events, we also report ratios of pT imbalance and azimuthal separation of dijets in high- and low-EA events. Within our measurement precision, no significant differences are observed, disfavoring the presence of jet quenching in the highest 30% EA p+Au collisions at sNN−−−√ = 200 GeV.
Production of protons and light nuclei in Au+Au collisions at √sNN = 3 GeV with the STAR detector
(2024)
We report the systematic measurement of protons and light nuclei production in Au+Au collisions at sNN−−−√ = 3 GeV by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The transverse momentum (pT) spectra of protons (p), deuterons (d), tritons (t), 3He, and 4He are measured from mid-rapidity to target rapidity for different collision centralities. We present the rapidity and centrality dependence of particle yields (dN/dy), average transverse momentum (⟨pT⟩), yield ratios (d/p, t/p,3He/p, 4He/p), as well as the coalescence parameters (B2, B3). The 4π yields for various particles are determined by utilizing the measured rapidity distributions, dN/dy. Furthermore, we present the energy, centrality, and rapidity dependence of the compound yield ratios (Np×Nt/N2d) and compare them with various model calculations. The physics implications of those results on the production mechanism of light nuclei and on QCD phase structure are discussed.
he chiral magnetic effect (CME) is a phenomenon that arises from the QCD anomaly in the presence of an external magnetic field. The experimental search for its evidence has been one of the key goals of the physics program of the Relativistic Heavy-Ion Collider. The STAR collaboration has previously presented the results of a blind analysis of isobar collisions (9644Ru+9644Ru, 9640Zr+9640Zr) in the search for the CME. The isobar ratio (Y) of CME-sensitive observable, charge separation scaled by elliptic anisotropy, is close to but systematically larger than the inverse multiplicity ratio, the naive background baseline. This indicates the potential existence of a CME signal and the presence of remaining nonflow background due to two- and three-particle correlations, which are different between the isobars. In this post-blind analysis, we estimate the contributions from those nonflow correlations as a background baseline to Y, utilizing the isobar data as well as Heavy Ion Jet Interaction Generator simulations. This baseline is found consistent with the isobar ratio measurement, and an upper limit of 10% at 95% confidence level is extracted for the CME fraction in the charge separation measurement in isobar collisions at sNN−−−√=200 GeV.
For the search of the chiral magnetic effect (CME), STAR previously presented the results from isobar collisions (9644Ru+9644Ru, 9640Zr+9640Zr) obtained through a blind analysis. The ratio of results in Ru+Ru to Zr+Zr collisions for the CME-sensitive charge-dependent azimuthal correlator (Δγ), normalized by elliptic anisotropy (v2), was observed to be close to but systematically larger than the inverse multiplicity ratio. The background baseline for the isobar ratio, Y=(Δγ/v2)Ru(Δγ/v2)Zr, is naively expected to be (1/N)Ru(1/N)Zr; however, genuine two- and three-particle correlations are expected to alter it. We estimate the contributions to Y from those correlations, utilizing both the isobar data and HIJING simulations. After including those contributions, we arrive at a final background baseline for Y, which is consistent with the isobar data. We extract an upper limit for the CME fraction in the Δγ measurement of approximately 10% at a 95% confidence level on in isobar collisions at sNN−−−√=200 GeV, with an expected 15% difference in their squared magnetic fields.
Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometre-scale space. These complex systems manifest a variety of shapes1,2,3, traditionally explored using non-invasive spectroscopic techniques at low energies4,5. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the collective-flow-assisted nuclear shape-imaging method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors6,7. We benchmark this method in collisions of ground-state uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.
Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometer-scale space. These complex systems manifest a variety of shapes, traditionally explored using non-invasive spectroscopic techniques at low energies. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the ``collective flow assisted nuclear shape imaging'' method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analyzing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors. We benchmark this method in collisions of ground state Uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.
The differential cross section for 𝑍0 production, measured as a function of the boson’s transverse momentum (𝑝T), provides important constraints on the evolution of the transverse momentum dependent parton distribution functions (TMDs). The transverse single spin asymmetry (TSSA) of the 𝑍0 is sensitive to one of the polarized TMDs, the Sivers function, which is predicted to have the opposite sign in 𝑝 + 𝑝 → 𝑊 ∕𝑍 + 𝑋 from that which enters in semi-inclusive deep inelastic scattering. In this Letter, the STAR Collaboration reports the first measurement of the 𝑍0∕𝛾∗ differential cross section as a function of its 𝑝T in 𝑝+𝑝 collisions at a center-of-mass energy of 510 GeV, together with the 𝑍0∕𝛾∗ total cross section. We also report the measurement of 𝑍0∕𝛾∗ TSSA in transversely polarized 𝑝+𝑝 collisions at 510 GeV.
We report on the charged-particle multiplicity dependence of net-proton cumulant ratios up to sixth order from s√=200 GeV p+p collisions at the Relativistic Heavy Ion Collider (RHIC). The measured ratios C4/C2, C5/C1, and C6/C2 decrease with increased charged-particle multiplicity and rapidity acceptance. Neither the Skellam baselines nor PYTHIA8 calculations account for the observed multiplicity dependence. In addition, the ratios C5/C1 and C6/C2 approach negative values in the highest-multiplicity events, which implies that thermalized QCD matter may be formed in p+p collisions.
We report on the charged-particle multiplicity dependence of net-proton cumulant ratios up to sixth order from s√=200 GeV p+p collisions at the Relativistic Heavy Ion Collider (RHIC). The measured ratios C4/C2, C5/C1, and C6/C2 decrease with increased charged-particle multiplicity and rapidity acceptance. Neither the Skellam baselines nor PYTHIA8 calculations account for the observed multiplicity dependence. In addition, the ratios C5/C1 and C6/C2 approach negative values in the highest-multiplicity events, which implies that thermalized QCD matter may be formed in p+p collisions.