Refine
Year of publication
Language
- English (81)
Has Fulltext
- yes (81)
Is part of the Bibliography
- no (81)
Keywords
Institute
- Physik (80)
- Frankfurt Institute for Advanced Studies (FIAS) (36)
- Informatik (23)
- Informatik und Mathematik (1)
Azimuthal anisotropy (v2) and two-particle angular correlations of high pT charged hadrons have been measured in Au+Au collisions at sqrt[sNN]=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high pT partons. The monotonic rise of v2(pT) for pT<2 GeV/c is consistent with collective hydrodynamical flow calculations. At pT>3 GeV/c, a saturation of v2 is observed which persists up to pT=6 GeV/c.
The interaction of Λ and Σ hyperons (Y) with nucleons (N) is strongly influenced by the coupled-channel dynamics. Due to the small mass difference of the NΛ and NΣ systems, the sizable coupling strength of the NΣ ↔ NΛ processes constitutes a crucial element in the determination of the NΛ interaction. In this letter we present the most precise measurements on the interaction of p pairs, from zero relative momentum up to the opening of the NΣ channel. The correlation function in the relative momentum space for p ⊕ p pairs measured in high-multiplicity triggered pp collisions at √s = 13 TeV at the LHC is reported. The opening of the inelastic NΣ channels is visible in the extracted correlation function as a cusp-like structure occurring at relative momentum k∗ = 289 MeV/c. This represents the first direct experimental observation of the NΣ ↔ NΛ coupled channel in the p system. The correlation function is compared with recent chiral effective field theory calculations, based on different strengths of the NΣ ↔ NΛ transition potential. A weaker coupling, as possibly supported by the present measurement, would require a more repulsive three-body NNΛ interaction for a proper description of the in-medium properties, which has implications on the nuclear equation of state and for the presence of hyperons inside neutron stars.
Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (nonflow correlations). Using data for Au + Au collisions at sqrt[sNN]=130 GeV from the STAR time projection chamber, it is found that four-particle correlation analyses can reliably separate flow and nonflow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of 2. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.
The STAR Collaboration reports the first observation of exclusive rho 0 photoproduction, AuAu-->AuAu rho 0, and rho 0 production accompanied by mutual nuclear Coulomb excitation, AuAu-->Au [star] Au [star] rho 0, in ultraperipheral heavy-ion collisions. The rho 0 have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt[sNN]=130 GeV agree with theoretical predictions treating rho 0 production and Coulomb excitation as independent processes.
We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, Lambda , and Lambda -bar at midrapidity in Au+Au collisions at sqrt[sNN]=130 GeV at the Relativistic Heavy Ion Collider. The value of v2 as a function of transverse momentum, pt, of the produced particle and collision centrality is presented for both particles up to pt~3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.
Inclusive transverse momentum distributions of charged hadrons within 0.2<pT<6.0 GeV/c have been measured over a broad range of centrality for Au+Au collisions at sqrt[sNN]=130 GeV. Hadron yields are suppressed at high pT in central collisions relative to peripheral collisions and to a nucleon-nucleon reference scaled for collision geometry. Peripheral collisions are not suppressed relative to the nucleon-nucleon reference. The suppression varies continuously at intermediate centralities. The results indicate significant nuclear medium effects on high-pT hadron production in heavy-ion collisions at high energy.
We report the first measurement of strange ( Lambda ) and antistrange ( Lambda -bar) baryon production from sqrt[sNN]=130 GeV Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Rapidity density and transverse mass distributions at midrapidity are presented as a function of centrality. The yield of Lambda and Lambda -bar hyperons is found to be approximately proportional to the number of negative hadrons. The production of Lambda -bar hyperons relative to negative hadrons increases very rapidly with transverse momentum. The magnitude of the increase cannot be described by existing hadronic string fragmentation models alone.
Effect of event selection on jetlike correlation measurement in d+Au collisions at √sNN=200 GeV
(2015)
Dihadron correlations are analyzed in √sNN = 200 GeV d + Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.
We report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2 < pT < 6 GeV/c in p + p collisions at √s = 200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT , indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models.
A data-driven method was applied to Au+Au collisions at √sNN = 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance η-dependent and η-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a η-independent component of the correlation, which is dominated by anisotropic flow and flow fluctuations. It was also found to be independent of η within the measured range of pseudorapidity |η| < 1. In 20–30% central Au+Au collisions, the relative flow fluctuation was found to be 34%±2%(stat.)±3%(sys.) for particles with transverse momentum pT less than 2 GeV/c. The η-dependent part, attributed to nonflow correlations, is found to be 5% ± 2%(sys.) relative to the flow of the measured second harmonic cumulant at |η| > 0.7.