Refine
Document Type
- Preprint (6)
- Article (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- heavy-ion collisions (2)
- particle ratios (2)
- Chiralität <Elementarteilchenphysik> (1)
- Dichte (1)
- Gleichgewicht (1)
- J/ϕ (1)
- Kollisionen des schweren Ions (1)
- Kritischer Punkt (1)
- Nichtgleichgewichts-Phasenübergang (1)
- Partikel (1)
Institute
Abstract: The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) Ã É approach. The commonly adopted non-interacting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. In contrast, the chiral SU(3) model predicts temperature and density dependent effective hadron masses and effective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three different parametrizations of the model, which show different types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters differ considerably from those obtained in simple non-interacting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The inmedium masses turn out to differ up to 150 MeV from their vacuum values.
Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J/psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.
The production of black holes at Tevatron and LHC in spacetimes with compactified space-like large extra dimensions is studied. Either black holes can already be observed in ¯ pp collisions at s = 1.8 TeV or the fundamental gravity scale has to be above 1.4 TeV. At LHC the creation of a large number of quasi-stable black holes is predicted, with lifetimes beyond several hundred fm/c. A cut-off in the high-PT jet cross section is shown to be a unique signature of black hole production. This signal is compared to the jet plus missing energy signature due to graviton production in the final state as proposed by the ATLAS collaboration.
We introduce a model for the real-time evolution of a relativistic fluid of quarks coupled to non-equilibrium dynamics of the long wavelength (classical) modes of the chiral condensate. We solve the equations of motion numerically in 3+1 spacetime dimensions. Starting the evolution at high temperature in the symmetric phase, we study dynamical trajectories that either cross the line of first-order phase transitions or evolve through its critical endpoint. For those cases, we predict the behavior of the azimuthal momentum asymmetry for highenergy heavy-ion collisions at nonzero impact parameter.
We investigate the excitation function of directed flow, which can provide a clear signature of the creation of the QGP and demonstrate that the minimum of the directed flow does not correspond to the softest point of the EoS for isentropic expansion. A novel technique measuring the compactness is introduced to determine the QGP transition in relativistic-heavy ion collisions: The QGP transition will lead to higher compression and therefore to higher compactness of the source in coordinate space. This e ect can be observed by pion interferometry. We propose to measure the compactness of the source in the appropriate principal axis frame of the compactness tensor in coordinate space.
Compactness is introduced as a new method to search for the onset of the quark matter transition in relativistic heavy ion collisions. That transition supposedly leads to stronger compression and higher compactness of the source in coordinate space. That effect could be observed via pion interferometry. We propose to measure the compactness of the source in the appropriate principal axis frame of the compactness tensor in coordinate space.
Nichtgleichgewichtsdynamik des chiralen Phasenübergangs in relativistischen Kern-Kern-Kollisionen
(2005)
In meiner Dissertation "Nichtgleichgewichtsdynamik des chiralen Phasenübergangs bei endlichen Temperaturen und Dichten" untersuche ich das Verhalten von stark wechselwirkender Materie bei hohen Temperaturen und Baryonendichten. Diese Form der Materie untersucht man mit Hilfe von Kern-Kern-Kollisionen an großen Beschleunigern am SPS in Genf (Schweiz) und am RHIC in Brookhaven (USA). Die Quantenchromodynamik (QCD) ist bis heute der beste Kandidat für die Theorie der starken Wechselwirkung und sollte daher die verschiedenen Phasen bei allen Baryonendichten und Temperaturen beschreiben. In der Praxis läßt die QCD sich bisher allerdings nur in einigen Grenzfällen, bei denen eine Störungstheoretische Beschreibung möglich ist, lösen. Daher ist es notwendig, bei endlichen Temperaturen und Baryonendichten effektive Modelle zu entwickeln, welche dann nur den grundlegenden Eigenschaften der QCD Rechnung tragen. Untersuchungen haben ergeben, daß die QCD zwei unterschiedliche Phasenübergänge beinhaltet. Zum einen den sogenannten Deconfinement-Phasenübergang von Kernmaterie zu einem asymptotisch freien Zustand, dem Quark Gluon Plasma, und zum anderen den chiralen Phasenübergang von massiven zu masselosen Teilchen. Gittereichtheoretische Rechnungen haben darüber hinaus gezeigt, daß es im Phasendiagramm einen kritischen Punkt und es Phasenübergänge erster Ordnung und sogenannte Crossover-übergänge gibt. In meiner Arbeit habe ich ein Modell verwendet und weiterentwickelt mit dem es möglich ist, den sogenannten {\em chiralen Phasenübergang} im Nichtgleichgewicht zu untersuchen. Dabei betrachte ich den übergang von masselosen (bei hohen Temperaturen und Baryonendichten) zu massiven Quarks (bei niedrigen Temperaturen und Baryonendichten). Der Schwerpunkt meiner Arbeit liegt auf den Nichtgleichgewichtseffekten des chiralen Phasenübergangs. Solche Nichtgleichgewichtseffekte sind zum Beispiel der Siedeverzug, wie man ihn manchmal beim Kochen von Wasser in einem Reagenzglas vorfindet. Auch hier wird die zeitliche Entwicklung des Systems durch Nichtgleichgewichtseffekte stark verändert, das Wasser kocht nicht einfach nur, sondern es verdampft schlagartig. Ziel meiner Arbeit ist es nun, den Einfluß von Nichtgleichgewichtseffekten auf den chiralen Phasenübergang in Kern-Kern-Kollisionen und insbesondere den Einfluß des kritischen Punktes zu untersuchen. Um mehr über den Phasenübergang im Nichtgleichgewicht herauszufinden, bietet es sich an, Fluktuationen bestimmter thermodynamischer Größen und ihren Einfluß auf Observablen zu untersuchen. Hierzu werden Fluktuationen in die Anfangsbedingungen der numerischen Simulationen eingefügt und untersucht, wie sich jeweils die zeitliche Entwicklung des Systems verhält. Zunächst habe ich die zeitliche Entwicklung der Fluktuationen in Abhängigkeit von der anfänglichen Systemgröße untersucht. Für ein unendliches System würde man am kritischen Punkt eine divergierende Korrelationslänge der Fluktuationen erwarten. Bei einer Kern-Kern-Kollision ist die Größe des Systems hingegen endlich und das System expandiert sehr schnell. Meine Ergebnisse zeigen, daß für alle untersuchten Systemgrößen die Korrelationslänge maximal 2-3 mal so groß wie die anfängliche Korrelationslänge wurde. Es ist daher zweifelhaft, ob dieser Effekt in Kern-Kern-Kollisionen gemessen werden kann. \\ Daher habe ich im weiteren untersucht, wie sich die anfänglichen Fluktuationen des Ordnungsparameters auf die Entwicklung der Energie- und Baryonendichte des Systems auswirken. Die Ergebnisse zeigen, wie Inhomogenitäten von Energie- und Baryonendichte durch die Anwesenheit von verschiedenen Phasenübergängen beeinflußt werden. Während die Inhomogenitäten der Energiedichte sich nur wenig unterscheiden, zeigt sich bei der Baryonendichte ein anderes Verhalten. Für Phasenüberänge erster Ordnung sind die Inhomogenitäten deutlich höher als für Crossover-übergänge. Dies könnte sich unter anderem in der relativen Häufigkeit bestimmter Teilchenspezies wie der Kaonen und Pionen bemerkbar machen.
We investigate hadron production and transverse hadron spectra in nucleus-nucleus collisions from 2 A·GeV to 21.3 A·TeV within two independent transport approaches (UrQMD and HSD) based on quark, diquark, string and hadronic degrees of freedom. The enhancement of pion production in central Au+Au (Pb+Pb) collisions relative to scaled pp collisions (the ’kink’) is described well by both approaches without involving a phase transition. However, the maximum in the K+ p+ ratio at 20 to 30 A·GeV (the ’horn’) is missed by ~ 40%. Also, at energies above ~5 A·GeV, the measured K± mT-spectra have a larger inverse slope than expected from the models. Thus the pressure generated by hadronic interactions in the transport models at high energies is too low. This finding suggests that the additional pressure - as expected from lattice QCD at finite quark chemical potential and temperature - might be generated by strong interactions in the early pre-hadronic/partonic phase of central heavy-ion collisions. Finally, we discuss the emergence of density perturbations in a first-order phase transition and why they might affect relative hadron multiplicities, collective flow, and hadron mean-free paths at decoupling. A minimum in the collective flow v2 excitation function was discovered experimentally at 40 A·GeV - such a behavior has been predicted long ago as signature for a first order phase transition.