Refine
Year of publication
Document Type
- Article (18)
- Book (2)
- Preprint (2)
- Working Paper (1)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- Bauen (2)
- Hausforschung (2)
- Landschaftsgebundenes (2)
- Lehmbau (2)
- Lobi (2)
- ADHD (1)
- CVID (1)
- Comparative analysis (1)
- Deep neural network (1)
- Electron-pion identification (1)
Institute
Philadelphia-like B-cell precursor acute lymphoblastic leukemia (Ph-like ALL) is characterized by distinct genetic alterations and inferior prognosis in children and younger adults. The purpose of this study was a genetic and clinical characterization of Ph-like ALL in adults. Twenty-six (13%) of 207 adult patients (median age: 42 years) with B-cell precursor ALL (BCP-ALL) were classified as having Ph-like ALL using gene expression profiling. The frequency of Ph-like ALL was 27% among 95 BCP-ALL patients negative for BCR-ABL1 and KMT2A-rearrangements. IGH-CRLF2 rearrangements (6/16; P=0.002) and mutations in JAK2 (7/16; P<0.001) were found exclusively in the Ph-like ALL subgroup. Clinical and outcome analyses were restricted to patients treated in German Multicenter Study Group for Adult ALL (GMALL) trials 06/99 and 07/03 (n=107). The complete remission rate was 100% among both Ph-like ALL patients (n=19) and the “remaining BCP-ALL” cases (n=40), i.e. patients negative for BCR-ABL1 and KMT2A-rearrangements and the Ph-like subtype. Significantly fewer Ph-like ALL patients reached molecular complete remission (33% versus 79%; P=0.02) and had a lower probability of continuous complete remission (26% versus 60%; P=0.03) and overall survival (22% versus 64%; P=0.006) at 5 years compared to the remaining BCP-ALL patients. The profile of genetic lesions in adults with Ph-like ALL, including older adults, resembles that of pediatric Ph-like ALL and differs from the profile in the remaining BCP-ALL. Our study is the first to demonstrate that Ph-like ALL is associated with inferior outcomes in intensively treated older adult patients. Ph-like adult ALL should be recognized as a distinct, high-risk entity and further research on improved diagnostic and therapeutic approaches is needed.
Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs.
Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel.
Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1–25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0–88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE- syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%—subcutaneous; 29%—intravenous; 1%—unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy.
Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment.
The project focuses on the efficiency of combined technologies to reduce the release of micropollutants and bacteria into surface waters via sewage treatment plants of different size and via stormwater overflow basins of different types. As a model river in a highly populated catchment area, the river Schussen and, as a control, the river Argen, two tributaries of Lake Constance, Southern Germany, are under investigation in this project. The efficiency of the different cleaning technologies is monitored by a wide range of exposure and effect analyses including chemical and microbiological techniques as well as effect studies ranging from molecules to communities.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p–Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
Importance: The entry of artificial intelligence into medicine is pending. Several methods have been used for the predictions of structured neuroimaging data, yet nobody compared them in this context.
Objective: Multi-class prediction is key for building computational aid systems for differential diagnosis. We compared support vector machine, random forest, gradient boosting, and deep feed-forward neural networks for the classification of different neurodegenerative syndromes based on structural magnetic resonance imaging.
Design, setting, and participants: Atlas-based volumetry was performed on multi-centric T1-weighted MRI data from 940 subjects, i.e., 124 healthy controls and 816 patients with ten different neurodegenerative diseases, leading to a multi-diagnostic multi-class classification task with eleven different classes.
Interventions: N.A.
Main outcomes and measures: Cohen’s kappa, accuracy, and F1-score to assess model performance.
Results: Overall, the neural network produced both the best performance measures and the most robust results. The smaller classes however were better classified by either the ensemble learning methods or the support vector machine, while performance measures for small classes were comparatively low, as expected. Diseases with regionally specific and pronounced atrophy patterns were generally better classified than diseases with widespread and rather weak atrophy.
Conclusions and relevance: Our study furthermore underlines the necessity of larger data sets but also calls for a careful consideration of different machine learning methods that can handle the type of data and the classification task best.
For a virtual screening study, we introduce a combination of machine learning techniques, employing a graph kernel, Gaussian process regression and clustered cross-validation. The aim was to find ligands of peroxisome-proliferator activated receptor gamma (PPAR-y). The receptors in the PPAR family belong to the steroid-thyroid-retinoid superfamily of nuclear receptors and act as transcription factors. They play a role in the regulation of lipid and glucose metabolism in vertebrates and are linked to various human processes and diseases. For this study, we used a dataset of 176 PPAR-y agonists published by Ruecker et al. ...
The repertoire of natural products offers tremendous opportunities for chemical biology and drug discovery. Natural product-inspired synthetic molecules represent an ecologically and economically sustainable alternative to the direct utilization of natural products. De novo design with machine intelligence bridges the gap between the worlds of bioactive natural products and synthetic molecules. On employing the compound Marinopyrrole A from marine Streptomyces as a design template, the algorithm constructs innovative small molecules that can be synthesized in three steps, following the computationally suggested synthesis route. Computational activity prediction reveals cyclooxygenase (COX) as a putative target of both Marinopyrrole A and the de novo designs. The molecular designs are experimentally confirmed as selective COX-1 inhibitors with nanomolar potency. X-ray structure analysis reveals the binding of the most selective compound to COX-1. This molecular design approach provides a blueprint for natural product-inspired hit and lead identification for drug discovery with machine intelligence.