Refine
Year of publication
Document Type
- Article (17)
- Doctoral Thesis (1)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Keywords
- differentiation (3)
- invasion (3)
- p21 (3)
- preeclampsia (3)
- Aurora A (2)
- BCL6 (2)
- CDKN1A (2)
- COVID-19 (2)
- Plk1 inhibitors (2)
- Primary cilium (2)
Institute
- Medizin (17)
- Biochemie und Chemie (1)
The coronavirus disease 2019 COVID-19 pandemic is rapidly spreading worldwide and is becoming a major public health crisis. Increasing evidence demonstrates a strong correlation between obesity and the COVID-19 disease. We have summarized recent studies and addressed the impact of obesity on COVID-19 in terms of hospitalization, severity, mortality, and patient outcome. We discuss the potential molecular mechanisms whereby obesity contributes to the pathogenesis of COVID-19. In addition to obesity-related deregulated immune response, chronic inflammation, endothelium imbalance, metabolic dysfunction, and its associated comorbidities, dysfunctional mesenchymal stem cells/adipose-derived mesenchymal stem cells may also play crucial roles in fueling systemic inflammation contributing to the cytokine storm and promoting pulmonary fibrosis causing lung functional failure, characteristic of severe COVID-19. Moreover, obesity may also compromise motile cilia on airway epithelial cells and impair functioning of the mucociliary escalators, reducing the clearance of severe acute respiratory syndrome coronavirus (SARS-CoV-2). Obese diseased adipose tissues overexpress the receptors and proteases for the SARS-CoV-2 entry, implicating its possible roles as virus reservoir and accelerator reinforcing violent systemic inflammation and immune response. Finally, anti-inflammatory cytokines like anti-interleukin 6 and administration of mesenchymal stromal/stem cells may serve as potential immune modulatory therapies for supportively combating COVID-19. Obesity is conversely related to the development of COVID-19 through numerous molecular mechanisms and individuals with obesity belong to the COVID-19-susceptible population requiring more protective measures.
Background: Preeclampsia is one of the leading causes of maternal and perinatal mortality and morbidity worldwide and its pathogenesis is not totally understood. As a member of the chromosomal passenger complex and an inhibitor of apoptosis, survivin is a well-characterized oncoprotein. Its roles in trophoblastic cells remain to be defined.
Methods: The placental samples from 16 preeclampsia patients and 16 well-matched controls were included in this study. Real-time PCR, immunohistochemistry and Western blot analysis were carried out with placental tissues. Primary trophoblastic cells from term placentas were isolated for Western blot analysis. Cell proliferation, cell cycle analysis and immunofluorescence staining were performed in trophoblastic cell lines BeWo, JAR and HTR-8/SVneo.
Results: The survivin gene is reduced but the protein amount is hardly changed in preeclamptic placentas, compared to control placentas. Upon stress, survivin in trophoblastic cells is phosphorylated on its residue serine 20 by protein kinase A and becomes stabilized, accompanied by increased heat shock protein 90. Depletion of survivin induces chromosome misalignment, abnormal centrosome integrity, and reduced localization and activity of Aurora B at the centromeres/kinetochores in trophoblastic metaphase cells.
Conclusions: Our data indicate that survivin plays pivotal roles in cell survival and proliferation of trophoblastic cells. Further investigations are required to define the function of survivin in each cell type of the placenta in the context of proliferation, differentiation, apoptosis, angiogenesis, migration and invasion.
The multifaceted p21 (Cip1/Waf1/CDKN1A) in cell differentiation, migration and cancer therapy
(2019)
Loss of cell cycle control is characteristic of tumorigenesis. The protein p21 is the founding member of cyclin-dependent kinase inhibitors and an important versatile cell cycle protein. p21 is transcriptionally controlled by p53 and p53-independent pathways. Its expression is increased in response to various intra- and extracellular stimuli to arrest the cell cycle ensuring genomic stability. Apart from its roles in cell cycle regulation including mitosis, p21 is involved in differentiation, cell migration, cytoskeletal dynamics, apoptosis, transcription, DNA repair, reprogramming of induced pluripotent stem cells, autophagy and the onset of senescence. p21 acts either as a tumor suppressor or as an oncogene depending largely on the cellular context, its subcellular localization and posttranslational modifications. In the present review, we briefly mention the general functions of p21 and summarize its roles in differentiation, migration and invasion in detail. Finally, regarding its dual role as tumor suppressor and oncogene, we highlight the potential, difficulties and risks of using p21 as a biomarker as well as a therapeutic target.
A message from the human placenta: structural and immunomodulatory defense against SARS-CoV-2
(2020)
The outbreak of the coronavirus disease 2019 (COVID-19) pandemic has caused a global public health crisis. Viral infections may predispose pregnant women to a higher rate of pregnancy complications, including preterm births, miscarriage and stillbirth. Despite reports of neonatal COVID-19, definitive proof of vertical transmission is still lacking. In this review, we summarize studies regarding the potential evidence for transplacental transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), characterize the expression of its receptors and proteases, describe the placental pathology and analyze virus-host interactions at the maternal-fetal interface. We focus on the syncytium, the barrier between mother and fetus, and describe in detail its physical andstructuraldefenseagainstviralinfections. Wefurtherdiscussthepotentialmolecularmechanisms, whereby the placenta serves as a defense front against pathogens by regulating the interferon type III signaling, microRNA-triggered autophagy and the nuclear factor-κB pathway. Based on these data, we conclude that vertical transmission may occur but rare, ascribed to the potent physical barrier, the fine-regulatedplacentalimmunedefenseandmodulationstrategies. Particularly,immunomodulatory mechanismsemployedbytheplacentamaymitigateviolentimmuneresponse,maybesoftencytokine storm tightly associated with severely ill COVID-19 patients, possibly minimizing cell and tissue damages, and potentially reducing SARS-CoV-2 transmission.
Preeclampsia (PE) remains a leading cause of maternal and perinatal mortality and morbidity worldwide. Its pathogenesis has not been fully elucidated and no causal therapy is currently available. It is of clinical relevance to decipher novel molecular biomarkers. RITA (RBP-J (recombination signal binding protein J)-interacting and tubulin-associated protein) has been identified as a negative modulator of the Notch pathway and as a microtubule-associated protein important for cell migration and invasion. In the present work, we have systematically studied RITA’s expression in primary placental tissues from patients with early- and late-onset PE as well as in various trophoblastic cell lines. RITA is expressed in primary placental tissues throughout gestation, especially in proliferative villous cytotrophoblasts, in the terminally differentiated syncytiotrophoblast, and in migrating extravillous trophoblasts. RITA’s messenger RNA (mRNA) level is decreased in primary tissue samples from early-onset PE patients. The deficiency of RITA impairs the motility and invasion capacity of trophoblastic cell lines, and compromises the fusion ability of trophoblast-derived choriocarcinoma cells. These data suggest that RITA may play important roles in the development of the placenta and possibly in the pathogenesis of PE.
The multifunctional protein p21Cip1/CDKN1A (p21) is an important and universal Cdk-interacting protein. Recently, we have reported that p21 is involved in the regulation of the mitotic kinase Cdk1/cyclin B1 and critical for successful mitosis and cytokinesis. In the present work we show that S130 of p21 is phosphorylated by Cdk1/cyclin B1 during mitosis, which reduces p21’s stability and binding affinity to Cdk1/cyclin B1. Interfering with this phosphorylation results in extended mitotic duration and defective chromosome segregation, indicating that this regulation ensures proper mitotic progression. Given that p53, the major transcriptional activator of p21, is the most frequently mutated gene in human cancer and that deregulated Cdk1 associates with the development of different types of cancer, this work provides new insight into the understanding of how deregulated p21 contributes to chromosomal instability and oncogenesis.
The oncogene B-cell lymphoma 6 (BCL6) is associated with lymphomagenesis. Intriguingly, its expression is increased in preeclamptic placentas. Preeclampsia is one of the leading causes of maternal and perinatal mortality and morbidity. Preeclamptic placentas are characterized by various defects like deregulated differentiation and impaired fusion of trophoblasts. Its pathogenesis is however not totally understood. We show here that BCL6 is present throughout the cell fusion process in the fusogenic trophoblastic cell line BeWo. Suppression of BCL6 promotes trophoblast fusion, indicated by enhanced levels of fusion-related β-hCG, syncytin 1 and syncytin 2. Increased mRNA levels of these genes could also be observed in primary term cytotrophoblasts depleted of BCL6. Conversely, stable overexpression of BCL6 reduces the fusion capacity of BeWo cells. These data suggest that an accurately regulated expression of BCL6 is important for proper differentiation and successful syncytialization of trophoblasts. While deregulated BCL6 is linked to lymphomagenesis by blocking lymphocyte terminal differentiation, increased BCL6 in the placenta contributes to the development of preeclampsia by impairing trophoblast differentiation and fusion.
In der vorliegenden Dissertation stand die Aufklärung der Funktion und Regulation von p21 in der Mitose im Mittelpunkt. p21 ist als Cdk-Inhibitor und Schlüsselregulator bekannt, der in viele fundamentale zelluläre Prozesse involviert ist: Zellzyklusregulation, Apoptose, Seneszenz, Zellmigration und Dynamik des Zytoskeletts, Transkription, Differenzierung sowie DNA-Reparatur, aber auch in die Umprogrammierung induzierter pluripotenter Stammzellen (Besson et al. 2008; Abbas und Dutta 2009; Jung et al. 2010).
Die unkontrollierte Proliferation von Zellen ist mit der Tumorgenese assoziiert und wird unter anderem durch die Fehlregulation von p21, aber auch durch die wichtigen mitotischen Kinasen Cdk1, im Komplex mit ihrer regulatorischen Untereinheit Cyclin B1, sowie Plk1 bedingt. Zudem ist das Fehlen von p21 oder die Fehllokalisation in das Zytoplasma mit einer schlechteren Prognose für den Patienten und Chemotherapie-Resistenz von Tumoren verbunden (Abukhdeir und Park 2008). Aufgrund der zunehmenden Inzidenz und Mortalität von Krebserkrankungen ist es daher von besonderem klinischem Interesse, die molekularen Ursachen für die Entstehung maligner Tumorerkrankungen aufzuklären. Bislang existieren kaum Studien über welche molekularen Mechanismen die Funktionen von p21, dem wichtigsten Cdk-Inhibitor, der zum Beispiel durch die Anwendung niedermolekularer Inhibitoren wie BI 2536, das sich bereits in klinischen Phase II Studien befindet (Strebhardt 2010), beeinflusst wird, während der Mitose reguliert werden.
In der vorliegenden Dissertation wurde daher die physiologische Rolle des Cdk-Inhibitors bzw. Regulators p21 während der Mitose untersucht und mit der Kinaseaktivität von Cdk1/Cyclin B1, wie auch Plk1 korreliert. Es konnte gezeigt werden, dass p21 während der Mitose stark exprimiert wird und dass mitotisches p21 in verschiedenen Krebszelllinien unabhängig von dem p53-Status in einer phosphorylierten Form vorkommt, welche mit der Aktivität von Cdk1 und weniger mit der von Cdk2 assoziiert ist. Durch Untersuchungen der isogenen HCT116-Zelllinien mit und ohne p21 wurde aufgezeigt, wie wichtig p21 für den ordnungsgemäßen Ablauf der Mitose ist. Ohne p21 sind sowohl die Anaphase wie auch die Zytokinese verlängert, die Zellen ordnen die Chromosomen fehlerhaft in der Metaphaseplatte an (congression Fehler), besitzen weitaus mehr lagging Chromosomen und fast 20 % der Zellen weisen im Versuchsverlauf Polyploidie auf. Durch den Verlust des Cdk-Regulators p21 kommt es zur Fehlregulation von Cdk1 und seiner Substrate (wie MCAK) und es treten die oben beschriebenen Probleme auf.
Weiterhin phosphoryliert Cdk1/Cyclin B1 p21 an Ser-130 in vitro und ex vivo in der frühen Phase der Mitose, der Prophase bzw. Prometaphase. Die nicht phosphorylierbare p21 Form S130A befindet sich hauptsächlich im Zellkern und führt zu vermehrtem Auftreten von congression Fehlern, während die S130D-Mutante, die die Phosphorylierung durch Cdk1 vortäuscht, schneller degradiert wird und zudem den Phänotyp der HCT116 p21-/- Zellen verstärkt. Zellen, die S130D exprimieren, benötigen mehr Zeit für das Durchlaufen der Mitose. Hier ist vor allem die Metaphase stark verlängert, aber auch Anaphase und Zytokinese. Dies führt zu congression Fehlern und zu Polyploidie. Diese Ergebnisse bestätigen, wie wichtig die zeitlich korrekte Phosphorylierung von p21 und die dadurch vermittelte Aktivierung von Cdk1/Cyclin B1 ist.
Darüber hinaus stabilisiert die Suppression von Plk1 das p21 Protein, was darauf hinweist, dass die Degradation von p21 während der Prometaphase von Plk1 kontrolliert wird. Dies wird von der Tatsache unterstützt, dass Ser-114, wie auch Ser116 von Plk1 in vitro phosphoryliert wird. Die Deregulation von p21 durch Plk1, SS114/116AA bzw. SS114/116DD induziert Chromosomenfehler, wodurch die molekularen Mechanismen, warum fehlreguliertes Plk1 die Tumorgenese fördert, hervorgehoben werden.
Nach Abschluss der bisherigen Untersuchungen steht fest, dass man sich von der starren Rolle von p21 als Tumorsuppressor und Akteur während der G1/S-Phase lösen muss. Der Cdk-Inhibitor p21 trägt entscheidend zur mitotischen Progression bei, vor allem bedingt durch die zeitlich ordnungsgemäße Inaktivierung bzw. Aktivierung von Cdk1/Cyclin B1, der Kinase, die wiederum zahlreiche für die Mitose essentielle Proteine reguliert. In Zukunft muss zum besseren Verständnis der Rolle von p21 in der Mitose die genaue Abfolge der Ereignisse unter Einbeziehung der Degradationsmechanismen eingehender untersucht werden.
Adipose-derived mesenchymal stem cells (ASCs) have crucial functions, but their roles in obesity are not well defined. We show here that ASCs from obese individuals have defective primary cilia, which are shortened and unable to properly respond to stimuli. Impaired cilia compromise ASC functionalities. Exposure to obesity-related hypoxia and cytokines shortens cilia of lean ASCs. Like obese ASCs, lean ASCs treated with interleukin-6 are deficient in the Hedgehog pathway, and their differentiation capability is associated with increased ciliary disassembly genes like AURKA. Interestingly, inhibition of Aurora A or its downstream target the histone deacetylase 6 rescues the cilium length and function of obese ASCs. This work highlights a mechanism whereby defective cilia render ASCs dysfunctional, resulting in diseased adipose tissue. Impaired cilia in ASCs may be a key event in the pathogenesis of obesity, and its correction might provide an alternative strategy for combating obesity and its associated diseases.
Function of p21 (Cip1/Waf1/CDKN1A) in migration and invasion of cancer and trophoblastic cells
(2019)
Tumor progression and pregnancy have several features in common. Tumor cells and placental trophoblasts share many signaling pathways involved in migration and invasion. Preeclampsia, associated with impaired differentiation and migration of trophoblastic cells, is an unpredictable and unpreventable disease leading to maternal and perinatal mortality and morbidity. Like in tumor cells, most pathways, in which p21 is involved, are deregulated in trophoblasts of preeclamptic placentas. The aim of the present study was to enlighten p21’s role in tumorigenic choriocarcinoma and trophoblastic cell lines. We show that knockdown of p21 induces defects in chromosome movement during mitosis, though hardly affecting proliferation and cell cycle distribution. Moreover, suppression of p21 compromises the migration and invasion capability of various trophoblastic and cancer cell lines mediated by, at least partially, a reduction of the extracellular signal-regulated kinase 3, identified using transcriptome-wide profiling, real-time PCR, and Western blot. Further analyses show that downregulation of p21 is associated with reduced matrix metalloproteinase 2 and tissue inhibitor of metalloproteinases 2. This work evinces that p21 is involved in chromosome movement during mitosis as well as in the motility and invasion capacity of trophoblastic and cancer cell lines.