Refine
Document Type
- Article (5)
- Conference Proceeding (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- CLVisc (1)
- Deep learning (1)
- Fluid dynamics (1)
- Heavy Ion Phenomenology (1)
- Heavy-ion physics (1)
- Hybrid model (1)
- Information theory and computation (1)
- Polarization (1)
- QCD Phenomenology (1)
- QCD equation of state (1)
Institute
A primordial state of matter consisting of free quarks and gluons that existed in the early universe a few microseconds after the Big Bang is also expected to form in high-energy heavy-ion collisions. Determining the equation of state (EoS) of such a primordial matter is the ultimate goal of high-energy heavy-ion experiments. Here we use supervised learning with a deep convolutional neural network to identify the EoS employed in the relativistic hydrodynamic simulations of heavy ion collisions. High-level correlations of particle spectra in transverse momentum and azimuthal angle learned by the network act as an effective EoS-meter in deciphering the nature of the phase transition in quantum chromodynamics. Such EoS-meter is model-independent and insensitive to other simulation inputs including the initial conditions for hydrodynamic simulations.
The coordinate and momentum space configurations of the net baryon number in heavy ion collisions that undergo spinodal decomposition, due to a first-order phase transition, are investigated using state-of-the-art machine-learning methods. Coordinate space clumping, which appears in the spinodal decomposition, leaves strong characteristic imprints on the spatial net density distribution in nearly every event which can be detected by modern machine learning techniques. On the other hand, the corresponding features in the momentum distributions cannot clearly be detected, by the same machine learning methods, in individual events. Only a small subset of events can be systematically differ- entiated if only the momentum space information is available. This is due to the strong similarity of the two event classes, with and without spinodal decomposition. In such sce- narios, conventional event-averaged observables like the baryon number cumulants signal a spinodal non-equilibrium phase transition. Indeed the third-order cumulant, the skewness, does exhibit a peak at the beam energy (Elab = 3–4 A GeV), where the transient hot and dense system created in the heavy ion collision reaches the first-order phase transition.
In this proceeding we review our recent work using supervised learning with a deep convolutional neural network (CNN) to identify the QCD equation of state (EoS) employed in hydrodynamic modeling of heavy-ion collisions given only final-state particle spectra ρ(pT, Ф). We showed that there is a traceable encoder of the dynamical information from phase structure (EoS) that survives the evolution and exists in the final snapshot, which enables the trained CNN to act as an effective “EoS-meter” in detecting the nature of the QCD transition.
The state-of-the-art pattern recognition method in machine learning (deep convolution neural network) is used to identify the equation of state (EoS) employed in the relativistic hydrodynamic simulations of heavy ion collisions. High-level correlations of particle spectra in transverse momentum and azimuthal angle learned by the network act as an effective EoS-meter in deciphering the nature of the phase transition in QCD. The EoS-meter is model independent and insensitive to other simulation inputs including the initial conditions and shear viscosity for hydrodynamic simulations. Through this study we demonstrate that there is a traceable encoder of the dynamical information from the phase structure that survives the evolution and exists in the final snapshot of heavy ion collisions and one can exclusively and effectively decode these information from the highly complex final output with machine learning when traditional methods fail. Besides the deep neural network, the performance of traditional machine learning classifiers are also provided.
We compute the fermion spin distribution in the vortical fluid created in off-central high energy heavy-ion collisions. We employ the event-by-event (3+1)D viscous hydrodynamic model. The spin polarization density is proportional to the local fluid vorticity in quantum kinetic theory. As a result of strong collectivity, the spatial distribution of the local vorticity on the freeze-out hyper-surface strongly correlates to the rapidity and azimuthal angle distribution of fermion spins. We investigate the sensitivity of the local polarization to the initial fluid velocity in the hydrodynamic model and compute the global polarization of Λ hyperons by the AMPT model. The energy dependence of the global polarization agrees with the STAR data.
In this proceeding, we review our recent work using deep convolutional neural network (CNN) to identify the nature of the QCD transition in a hybrid modeling of heavy-ion collisions. Within this hybrid model, a viscous hydrodynamic model is coupled with a hadronic cascade “after-burner”. As a binary classification setup, we employ two different types of equations of state (EoS) of the hot medium in the hydrodynamic evolution. The resulting final-state pion spectra in the transverse momentum and azimuthal angle plane are fed to the neural network as the input data in order to distinguish different EoS. To probe the effects of the fluctuations in the event-by-event spectra, we explore different scenarios for the input data and make a comparison in a systematic way. We observe a clear hierarchy in the predictive power when the network is fed with the event-by-event, cascade-coarse-grained and event-fine-averaged spectra. The carefully-trained neural network can extract high-level features from pion spectra to identify the nature of the QCD transition in a realistic simulation scenario.