Refine
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- ADHD (1)
- COVID 19 (1)
- Developmental Biology (1)
- Diseases (1)
- Epidemiological statistics (1)
- Epidemiology (1)
- Mathematics and computing (1)
- Neuroscience (1)
- PARK2 (1)
- Pandemics (1)
Institute
Predicting the cumulative medical load of COVID-19 outbreaks after the peak in daily fatalities
(2021)
The distinct ways the COVID-19 pandemic has been unfolding in different countries and regions suggest that local societal and governmental structures play an important role not only for the baseline infection rate, but also for short and long-term reactions to the outbreak. We propose to investigate the question of how societies as a whole, and governments in particular, modulate the dynamics of a novel epidemic using a generalization of the SIR model, the reactive SIR (short-term and long-term reaction) model. We posit that containment measures are equivalent to a feedback between the status of the outbreak and the reproduction factor. Short-term reaction to an outbreak corresponds in this framework to the reaction of governments and individuals to daily cases and fatalities. The reaction to the cumulative number of cases or deaths, and not to daily numbers, is captured in contrast by long-term reaction. We present the exact phase space solution of the controlled SIR model and use it to quantify containment policies for a large number of countries in terms of short and long-term control parameters. We find increased contributions of long-term control for countries and regions in which the outbreak was suppressed substantially together with a strong correlation between the strength of societal and governmental policies and the time needed to contain COVID-19 outbreaks. Furthermore, for numerous countries and regions we identified a predictive relation between the number of fatalities within a fixed period before and after the peak of daily fatality counts, which allows to gauge the cumulative medical load of COVID-19 outbreaks that should be expected after the peak. These results suggest that the proposed model is applicable not only for understanding the outbreak dynamics, but also for predicting future cases and fatalities once the effectiveness of outbreak suppression policies is established with sufficient certainty. Finally, we provide a web app (https://itp.uni-frankfurt.de/covid-19/) with tools for visualising the phase space representation of real-world COVID-19 data and for exporting the preprocessed data for further analysis.
The rapid spread of the Coronavirus (COVID-19) confronts policy makers with the problem of measuring the effectiveness of containment strategies, balancing public health considerations with the economic costs of social distancing measures. We introduce a modified epidemic model that we name the controlled-SIR model, in which the disease reproduction rate evolves dynamically in response to political and societal reactions. An analytic solution is presented. The model reproduces official COVID-19 cases counts of a large number of regions and countries that surpassed the first peak of the outbreak. A single unbiased feedback parameter is extracted from field data and used to formulate an index that measures the efficiency of containment strategies (the CEI index). CEI values for a range of countries are given. For two variants of the controlled-SIR model, detailed estimates of the total medical and socio-economic costs are evaluated over the entire course of the epidemic. Costs comprise medical care cost, the economic cost of social distancing, as well as the economic value of lives saved. Under plausible parameters, strict measures fare better than a hands-off policy. Strategies based on current case numbers lead to substantially higher total costs than strategies based on the overall history of the epidemic.
Five decades of US, UK, German and Dutch music charts show that cultural processes are accelerating
(2019)
Analysing the timeline of US, UK, German and Dutch music charts, we find that the evolution of album lifetimes and of the size of weekly rank changes provide evidence for an acceleration of cultural processes. For most of the past five decades, number one albums needed more than a month to climb to the top, nowadays an album is in contrast top ranked either from the start, or not at all. Over the last three decades, the number of top-listed albums increased as a consequence from roughly a dozen per year, to about 40. The distribution of album lifetimes evolved during the last decades from a log-normal distribution to a power law, a profound change. Presenting an information–theoretical approach to human activities, we suggest that the fading relevance of personal time horizons may be causing this phenomenon. Furthermore, we find that sales and airplay- based charts differ statistically and that the inclusion of streaming affects chart diversity adversely. We point out in addition that opinion dynamics may accelerate not only in cultural domains, as found here, but also in other settings, in particular in politics, where it could have far reaching consequences.
The development of binocular vision is an active learning process comprising the development of disparity tuned neurons in visual cortex and the establishment of precise vergence control of the eyes. We present a computational model for the learning and self-calibration of active binocular vision based on the Active Efficient Coding framework, an extension of classic efficient coding ideas to active perception. Under normal rearing conditions, the model develops disparity tuned neurons and precise vergence control, allowing it to correctly interpret random dot stereogramms. Under altered rearing conditions modeled after neurophysiological experiments, the model qualitatively reproduces key experimental findings on changes in binocularity and disparity tuning. Furthermore, the model makes testable predictions regarding how altered rearing conditions impede the learning of precise vergence control. Finally, the model predicts a surprising new effect that impaired vergence control affects the statistics of orientation tuning in visual cortical neurons.
The development of binocular vision is an active learning process comprising the development of disparity tuned neurons in visual cortex and the establishment of precise vergence control of the eyes. We present a computational model for the learning and self-calibration of active binocular vision based on the Active Efficient Coding framework, an extension of classic efficient coding ideas to active perception. Under normal rearing conditions with naturalistic input, the model develops disparity tuned neurons and precise vergence control, allowing it to correctly interpret random dot stereograms. Under altered rearing conditions modeled after neurophysiological experiments, the model qualitatively reproduces key experimental findings on changes in binocularity and disparity tuning. Furthermore, the model makes testable predictions regarding how altered rearing conditions impede the learning of precise vergence control. Finally, the model predicts a surprising new effect that impaired vergence control affects the statistics of orientation tuning in visual cortical neurons.
The repertoire of natural products offers tremendous opportunities for chemical biology and drug discovery. Natural product-inspired synthetic molecules represent an ecologically and economically sustainable alternative to the direct utilization of natural products. De novo design with machine intelligence bridges the gap between the worlds of bioactive natural products and synthetic molecules. On employing the compound Marinopyrrole A from marine Streptomyces as a design template, the algorithm constructs innovative small molecules that can be synthesized in three steps, following the computationally suggested synthesis route. Computational activity prediction reveals cyclooxygenase (COX) as a putative target of both Marinopyrrole A and the de novo designs. The molecular designs are experimentally confirmed as selective COX-1 inhibitors with nanomolar potency. X-ray structure analysis reveals the binding of the most selective compound to COX-1. This molecular design approach provides a blueprint for natural product-inspired hit and lead identification for drug discovery with machine intelligence.
Charts are used to measure relative success for a large variety of cultural items. Traditional music charts have been shown to follow self-organizing principles with regard to the distribution of item lifetimes, the on-chart residence times. Here we examine if this observation holds also for (a) music streaming charts (b) book best-seller lists and (c) for social network activity charts, such as Twitter hashtags and the number of comments Reddit postings receive. We find that charts based on the active production of items, like commenting, are more likely to be influenced by external factors, in particular by the 24 h day–night cycle. External factors are less important for consumption-based charts (sales, downloads), which can be explained by a generic theory of decision-making. In this view, humans aim to optimize the information content of the internal representation of the outside world, which is logarithmically compressed. Further support for information maximization is argued to arise from the comparison of hourly, daily and weekly charts, which allow to gauge the importance of decision times with respect to the chart compilation period.
The main goal of the present study was the identification of cellular phenotypes in attention-deficit-/hyperactivity disorder (ADHD) patient-derived cellular models from carriers of rare copy number variants (CNVs) in the PARK2 locus that have been previously associated with ADHD. Human-derived fibroblasts (HDF) were cultured and human-induced pluripotent stem cells (hiPSC) were reprogrammed and differentiated into dopaminergic neuronal cells (mDANs). A series of assays in baseline condition and in different stress paradigms (nutrient deprivation, carbonyl cyanide m-chlorophenyl hydrazine (CCCP)) focusing on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, reactive oxygen species (ROS) abundance) were performed and changes in mitochondrial network morphology evaluated. We found changes in PARK2 CNV deletion and duplication carriers with ADHD in PARK2 gene and protein expression, ATP production and basal oxygen consumption rates compared to healthy and ADHD wildtype control cell lines, partly differing between HDF and mDANs and to some extent enhanced in stress paradigms. The generation of ROS was not influenced by the genotype. Our preliminary work suggests an energy impairment in HDF and mDAN cells of PARK2 CNV deletion and duplication carriers with ADHD. The energy impairment could be associated with the role of PARK2 dysregulation in mitochondrial dynamics.