Refine
Year of publication
Language
- English (834)
Has Fulltext
- yes (834)
Is part of the Bibliography
- no (834)
Keywords
- Heavy Ion Experiments (14)
- Hadron-Hadron scattering (experiments) (12)
- LHC (10)
- Heavy-ion collision (6)
- Heavy-ion collisions (6)
- ALICE experiment (4)
- Heavy Ions (4)
- ALICE (3)
- Diffraction (3)
- Elastic scattering (3)
Institute
- Frankfurt Institute for Advanced Studies (FIAS) (737)
- Physik (726)
- Informatik (607)
- Hochschulrechenzentrum (2)
The production of the Λ(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at s√=7 TeV and in p–Pb collisions at sNN−−−√=5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel Λ(1520) →pK− and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p–Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons (π, K, K0S, p, Λ) describes the shape of the Λ(1520) transverse momentum distribution up to 3.5 GeV/c in p–Pb collisions. In the framework of this model, this observation suggests that the Λ(1520) resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of Λ(1520) to the yield of the ground state particle Λ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p–Pb collisions on the Λ(1520) yield.
We report on the measurements of directed flow v1 and elliptic flow v2 for hadrons (π±, K ±, K0 S , p, φ, Λ and ) from Au+Au collisions at √sN N = 3 GeV and v2 for (π±, K ±, p and p) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the numberof-constituent-quark (NCQ) scaling holds, at 3 GeV the v2 at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the v1 slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative v2 and positive v1 slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in √sNN = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in √sNN = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
We report the first multi-differential measurements of strange hadrons of K −, φ and − yields as well as the ratios of φ/K − and φ/− in Au+Au collisions at √sNN = 3 GeV with the STAR experiment fixed target configuration at RHIC. The φ mesons and − hyperons are measured through hadronic decay channels, φ → K + K − and Ξ− → Λπ−. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The 4π yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the φ/K − and φ/− ratios while the result of canonical ensemble (CE) calculations reproduce φ/K −, with the correlation length rc ∼ 2.7 fm, and φ/−, rc ∼ 4.2 fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3 GeV implies a rather different medium property at high baryon density.
Elliptic flow measurements from two-, four- and six-particle correlations are used to investigate flow fluctuations in collisions of U+U at sNN−−−√ = 193 GeV, Cu+Au at sNN−−−√ = 200 GeV and Au+Au spanning the range sNN−−−√ = 11.5 - 200 GeV. The measurements show a strong dependence of the flow fluctuations on collision centrality, a modest dependence on system size, and very little if any, dependence on particle species and beam energy. The results, when compared to similar LHC measurements, viscous hydrodynamic calculations, and Glauber model eccentricities, indicate that initial-state-driven fluctuations predominate the flow fluctuations generated in the collisions studied.
Elliptic flow measurements from two-, four- and six-particle correlations are used to investigate flow fluctuations in collisions of U+U at sNN−−−√= 193 GeV, Cu+Au at sNN−−−√= 200 GeV and Au+Au spanning the range sNN−−−√= 11.5 - 200 GeV. The measurements show a strong dependence of the flow fluctuations on collision centrality, a modest dependence on system size, and very little if any, dependence on particle species and beam energy. The results, when compared to similar LHC measurements, viscous hydrodynamic calculations, and T$\mathrel{\protect\raisebox{-2.1pt}{R}}$ENTo model eccentricities, indicate that initial-state-driven fluctuations predominate the flow fluctuations generated in the collisions studied.
The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of P and CP symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of 9644Ru+9644Ru and 9640Zr+9640Zr at sNN−−−√=200 GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.
Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of J/ψ photoproduction off the deuteron in UPCs at the center-of-mass energy sNN−−−√=200 GeV in d+Au collisions. The differential cross section as a function of momentum transfer −t is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.
In relativistic heavy-ion collisions, a global spin polarization, PH, of Λ and Λ¯ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing PH with decreasing sNN−−−√. A splitting between Λ and Λ¯ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of sNN−−−√=19.6 and 27 GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of PΛ¯−PΛ<0.24% and PΛ¯−PΛ<0.35%, respectively, at a 95% confidence level. We derive an upper limit on the naïve extraction of the late-stage magnetic field of B<9.4⋅1012 T and B<1.4⋅1013 T at sNN−−−√=19.6 and 27 GeV, respectively, although more thorough derivations are needed. Differential measurements of PH were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of |y|<1 and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.
In relativistic heavy-ion collisions, a global spin polarization, PH, of Λ and Λ¯ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing PH with decreasing sNN−−−√. A splitting between Λ and Λ¯ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of sNN−−−√=19.6 and 27 GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of PΛ¯−PΛ<0.24% and PΛ¯−PΛ<0.35%, respectively, at a 95% confidence level. We derive an upper limit on the naïve extraction of the late-stage magnetic field of B<9.4⋅1012 T and B<1.4⋅1013 T at sNN−−−√=19.6 and 27 GeV, respectively, although more thorough derivations are needed. Differential measurements of PH were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of |y|<1 and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.