Refine
Year of publication
Document Type
- Article (16)
- Contribution to a Periodical (2)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Keywords
- Absorption (2)
- 4-fluoroamphetamine (1)
- ABCB1 (1)
- APP processing (1)
- Alzheimer’s disease (1)
- Amyloid-beta (1)
- Bioavailability (1)
- Boswellia serrata (1)
- Boswellic acids (1)
- Caco-2 cells (1)
Institute
Wirkungen von Heilpflanzen, Gewürzen, Tees und Lebensmitteln werden in der Naturheilkunde seit der Antike genutzt. Pharmakologisch wirksam sind in der Regel nur die sekundären Pflanzeninhaltsstoffe. Diese in den oft aus vielen Bestandteilen zusammengesetzten Naturstoffen aufzuspüren und ihren molekularbiologischen Wirkungsmechanismus im Körper aufzuklären, ist das Ziel eines Forschungsnetzwerks am Frankfurter ZAFES (Zentrum für Arzneimittelforschung, -Entwicklung und -Sicherheit). So konnten Pharmazeuten und Kliniker gemeinsam herausfinden, wie ein Bestandteil des Rotweins, das Resveratrol, vor Darmkrebs schützt. Die Inhaltsstoffe von Salbei und Rosmarin bieten vielversprechende Ausgangspunkte für neue Medikamente gegen Altersdiabetes. Weihrauch, Myrte und Johanniskraut enthalten Wirkstoffe, die Schlüsselenzyme für Entzündungsreaktionen – etwa bei rheumatischen Beschwerden – hemmen.
Die Depression gehört zu den häufigsten Volkskrankheiten. Derzeit sind rund vier Millionen Deutsche an einer behandlungsbedürftigen Depression erkrankt. Die Erkrankung verläuft typischerweise in Form von Episoden, die Wochen bis Monate, manchmal auch Jahre anhalten können. Wenn die Erkrankung unbehandelt bleibt, kann sie wiederkehren und einen chronischen Verlauf nehmen. Rund 75 Prozent der Betroffenen erleiden nach einer Ersterkrankung innerhalb von fünf Jahren mindestens eine neue depressive Phase. Zudem werden mit steigender Episodenzahl die episodenfreien Zwischenzeiten immer kürzer. Es gilt heute als unstrittig, dass mehr als die Hälfte aller Depressionen nicht diagnostiziert und allenfalls ein Fünftel adäquat behandelt werden. Das verursacht nicht nur enorme Kosten für die Volkswirtschaft, sondern ist für die Betroffenen auch mit erheblichem Leid und Lebensgefahr verbunden.
YS-121 [2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic acid] is the result of target-oriented structural derivatization of pirinixic acid. It is a potent dual PPARα/γ-agonist, as well as a potent dual 5-LO/mPGES-1-inhibitor. Additionally, recent studies showed an anti-inflammatory efficacy in vivo. Because of its interference with many targets, YS-121 is a promising drug candidate for the treatment of inflammatory diseases. Ongoing preclinical studies will thus necessitate huge amounts of YS-121. To cope with those requirements, we have optimized the synthesis of YS-121. Surprisingly, we isolated and characterized byproducts during the resulting from nucleophilic aromatic substitution reactions by different tertiary alkylamines at a heteroaromatic halide. These amines should actually serve as assisting bases, because of their low nucleophilicity. This astonishing fact was not described in former publications concerning that type of reaction and, therefore, might be useful for further reaction improvement in general. Furthermore, we could develop a proposal for the mechanism of that byproduct formation.
Pirinixic acid derivatives, a new class of drug candidates for a range of diseases, interfere with targets including PPARα, PPARγ, 5-lipoxygenase (5-LO), and microsomal prostaglandin and E2 synthase-1 (mPGES1). Since 5-LO, mPGES1, PPARα, and PPARγ represent potential anti-cancer drug targets, we here investigated the effects of 39 pirinixic acid derivatives on prostate cancer (PC-3) and neuroblastoma (UKF-NB-3) cell viability and, subsequently, the effects of selected compounds on drug-resistant neuroblastoma cells. Few compounds affected cancer cell viability in low micromolar concentrations but there was no correlation between the anti-cancer effects and the effects on 5-LO, mPGES1, PPARα, or PPARγ. Most strikingly, pirinixic acid derivatives interfered with drug transport by the ATP-binding cassette (ABC) transporter ABCB1 in a drug-specific fashion. LP117, the compound that exerted the strongest effect on ABCB1, interfered in the investigated concentrations of up to 2μM with the ABCB1-mediated transport of vincristine, vinorelbine, actinomycin D, paclitaxel, and calcein-AM but not of doxorubicin, rhodamine 123, or JC-1. In silico docking studies identified differences in the interaction profiles of the investigated ABCB1 substrates with the known ABCB1 binding sites that may explain the substrate-specific effects of LP117. Thus, pirinixic acid derivatives may offer potential as drug-specific modulators of ABCB1-mediated drug transport.
Dosing accuracy of two disposable insulin pens according to new ISO 11608-1: 2012 requirements.
(2015)
OBJECTIVE: The aim was to compare 2 disposable insulin pens, FlexTouch® (Novo Nordisk, insulin aspart) and SoloSTAR® (Sanofi, insulin glulisine), according to new ISO 11608-1:2012 requirements for dosing accuracy.
METHODS: Sixty pens of each type were tested at 1, 40, and 80 U doses. Following the new ISO requirements, each dose was delivered from the front, middle, and rear one-third of the pen. Statistical analysis was performed using Student's t test.
RESULTS: Both pens delivered all doses within ISO limits. The difference between the average measured dose and the target dose was significantly smaller for SoloSTAR than FlexTouch at 40 U (P = .009) and 80 U (P = .008), but not at 1 U (P = .417).
CONCLUSION: Both insulin pens fulfilled the dosing accuracy requirements defined by ISO 11608-1:2012 at all 3 dosage levels.
The bile acid activated transcription factor farnesoid X receptor (FXR) regulates numerous metabolic processes and is a rising target for the treatment of hepatic and metabolic disorders. FXR agonists have revealed efficacy in treating non-alcoholic steatohepatitis (NASH), diabetes and dyslipidemia. Here we characterize imatinib as first-in-class allosteric FXR modulator and report the development of an optimized descendant that markedly promotes agonist induced FXR activation in a reporter gene assay and FXR target gene expression in HepG2 cells. Differential effects of imatinib on agonist-induced bile salt export protein and small heterodimer partner expression suggest that allosteric FXR modulation could open a new avenue to gene-selective FXR modulators.
Curcumin, the active constituent of Curcuma longa L. (family Zingiberaceae), has gained increasing interest because of its anti-cancer, anti-inflammatory, anti-diabetic, and anti-rheumatic properties associated with good tolerability and safety up to very high doses of 12 g. Nanoscaled micellar formulations on the base of Tween 80 represent a promising strategy to overcome its low oral bioavailability. We therefore aimed to investigate the uptake and transepithelial transport of native curcumin (CUR) vs. a nanoscaled micellar formulation (Sol-CUR) in a Caco-2 cell model. Sol-CUR afforded a higher flux than CUR (39.23 vs. 4.98 μg min−1 cm−2, respectively). This resulted in a higher Papp value of 2.11 × 10−6 cm/s for Sol-CUR compared to a Papp value of 0.56 × 10−6 cm/s for CUR. Accordingly a nearly 9.5 fold higher amount of curcumin was detected on the basolateral side at the end of the transport experiments after 180 min with Sol-CUR compared to CUR. The determined 3.8-fold improvement in the permeability of curcumin is in agreement with an up to 185-fold increase in the AUC of curcumin observed in humans following the oral administration of the nanoscaled micellar formulation compared to native curcumin. The present study demonstrates that the enhanced oral bioavailability of micellar curcumin formulations is likely a result of enhanced absorption into and increased transport through small intestinal epithelial cells.
Background: The oral administration of the gum resin extracts of Indian frankincense (Boswellia serrata Roxb. ex Colebr) results in very low plasma concentrations of boswellic acids (BAs), being far below the pharmacologically active concentrations required in vitro for anti-inflammatory activity. For that reason the use of Indian frankincense in clinical practice and pharmaceutical development has substantially lagged behind. Recently the application of new formulation technologies resulted in a formulation of frankincense extract with lecithin, which revealed improved absorption and tissue penetration of BAs in a rodent study, leading for the first time to plasma concentrations of BAs in the range of their anti-inflammatory activity.
Purpose: In order to verify these encouraging results in humans, the absorption of a standardized Boswellia serrata extract (BE) and its lecithin formulation (CSP) was comparatively investigated in healthy volunteers.
Study design: According to a randomized cross-over design with two treatments, two sequences and two periods, 12 volunteers alternatively received the lecithin-formulated Boswellia extract (CSP) or the non-formulated Boswellia extract (BE) at a dosage of 2 × 250 mg capsules.
Methods: The plasma concentrations of the six major BAs (KBA, AKBA, βBA, αBA, AβBA, AαBA) were determined using LC/MS.
Results: With the exception of KBA, a significantly higher (both in terms of weight-to-weight and molar comparison) and quicker absorption of BAs from the lecithin formulation was observed, leading to Cmax in the range required for the interaction with their molecular targets.
Conclusion: These findings pave the way to further studies evaluating the clinical potential of BAs, and verify the beneficial effect of lecithin formulation to improve the absorption of poorly soluble phytochemicals.