Refine
Document Type
- Article (8)
- Part of Periodical (1)
- Preprint (1)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- Bibliographie (1)
- Bisphosphonates (1)
- Compliance (1)
- Denosumab (1)
- Gangsterfilm (1)
- Gefängnisfilm (1)
- North German lowlands (1)
- Osteoporosis (1)
- Persistence (1)
- Preclinical research (1)
Institute
- Medizin (3)
- Frankfurt Institute for Advanced Studies (FIAS) (2)
- Geowissenschaften (2)
- Biowissenschaften (1)
- Pharmazie (1)
- Physik (1)
Gefängnisfilm
(2010)
Der Gefängnisfilm bildete sich als Subgenre des klassischen Gangsterfilms parallel zu dessen Entstehung zu Beginn der 1930er Jahre heraus. Die Haftanstalt nimmt in diesem Genre eine ebenso mythische wie notwendige Position ein, da der Gefängnisaufenthalt entweder das Ende einer Gangsterkarriere bedeutet oder eine Fortsetzung dieser Funktion unter veränderten Voraussetzungen. „Gefängnis und Gangster-Existenz bedingen einander so sehr, daß das eine ohne das andere kaum vorstellbar erscheint“, wie es in Kellners Gangsterfilm (1977) heißt. Der Gefängnisfilm ist letztlich ein Gangsterfilm, der seinen Haupthandlungsschauplatz in die Haftanstalt verlegt hat und dort entweder von der Läuterung des Gangsters, von dem Schicksal eines zu Unrecht Verurteilten oder einem Gefängnisaufstand erzählt.
Acute myeloid leukemia (AML) is a malignant disorder derived from neoplastic myeloid progenitor cells characterized by abnormal proliferation and differentiation. Although novel therapeutics have recently been introduced, AML remains a therapeutic challenge with insufficient cure rates. In the last years, immune-directed therapies such as chimeric antigen receptor (CAR)-T cells were introduced, which showed outstanding clinical activity against B-cell malignancies including acute lymphoblastic leukemia (ALL). However, the application of CAR-T cells appears to be challenging due to the enormous molecular heterogeneity of the disease and potential long-term suppression of hematopoiesis. Here we report on the generation of CD33-targeted CAR-modified natural killer (NK) cells by transduction of blood-derived primary NK cells using baboon envelope pseudotyped lentiviral vectors (BaEV-LVs). Transduced cells displayed stable CAR-expression, unimpeded proliferation, and increased cytotoxic activity against CD33-positive OCI-AML2 and primary AML cells in vitro. Furthermore, CD33-CAR-NK cells strongly reduced leukemic burden and prevented bone marrow engraftment of leukemic cells in OCI-AML2 xenograft mouse models without observable side effects.
Background Vasoplegic syndrome is frequently observed during cardiac surgery and resembles a complication of high mortality and morbidity. There is a clinical need for therapy and prevention of vasoplegic syndrome during complex cardiac surgical procedures. Therefore, we investigated different strategies in a porcine model of vasoplegia.
Methods We evaluated new medical therapies and prophylaxis to avoid vasoplegic syndrome in a porcine model. After induction of anesthesia, cardiopulmonary bypass was established through median sternotomy and central cannulation. Prolonged aortic cross-clamping (120 min) simulated a complex surgical procedure. The influence of sevoflurane-guided anesthesia (sevoflurane group) and the administration of glibenclamide (glibenclamide group) were compared to a control group, which received standard anesthesia using propofol. Online hemodynamic assessment was performed using PiCCO® measurements. In addition, blood and tissue samples were taken to evaluate hemodynamic effects and the degree of inflammatory response.
Results Glibenclamide was able to break through early vasoplegic syndrome by raising the blood pressure and systemic vascular resistance as well as less need of norepinephrine doses. Sevoflurane reduced the occurrence of the vasoplegic syndrome in the mean of stable blood pressure and less need of norepinephrine doses.
Conclusion Glibenclamide could serve as a potent drug to reduce effects of vasoplegic syndrome. Sevoflurane anesthesia during cardiopulmonary bypass shows less occurrence of vasoplegic syndrome and therefore could be used to prevent it in high-risk patients.
Clinical Perspective; what is new?
* to our knowledge, this is the first randomized in vivo study evaluating the hemodynamic effects of glibenclamide after the onset of vasoplegic syndrome
* furthermore according to literature research, there is no study showing the effect of sevoflurane-guided anesthesia on the occurrence of a vasoplegic syndrome
Clinical Perspective; clinical implications?
to achieve better outcomes after complex cardiac surgery there is a need for optimized drug therapy and prevention of the vasoplegic syndrome
Carma-1 is required for B cell receptor-/CD40- and T cell receptor-/CD28-induced B- and T-cell activation via JNK and NF-betaB. In B cells, Carma-1 becomes phosphorylated by PKCbeta, leading to its oligomerization. Subsequent Bcl10 binding induces IKKbeta-activation and, thereby, canonical NF-KB signalling. Despite these findings it is still unknown how exactly Carma-1 is connected to the plasma membrane and to the IKK-complex. Therefore, we purified Carma-1 complexes from mouse CH12 B cells using anti-Carma-1 affinity columns. Mass spectrometric analyses of the column eluates demonstrated the presence of Carma-1 as well as three previously uncharacterized adaptor proteins in B cells, one of which was the Trk-fused gene (Tfg), an adaptor protein containing PB1 and coiledcoil domains. Whereas Tfg was originally identified as fusion partner of oncogenic Trk tyrosine kinase mutants, the normal cellular homologue of Tfg has so far not been described in B cells. However, Tfg has been shown in other systems to interact with IKKgamma and to enhance TNFinduced NF-KB activation. Tfg and Carma-1 co-localized at the plasma membrane and perinuclear structures in B cells. We further corroborated the interactions of Tfg, IKKgamma and Carma-1 by Blue Native gel electrophoresis, where Carma-1 and Tfg formed a 0.7–1 MDa complex. Ectopic expression of Tfg increased the molecular mass of IKKgamma complexes, fused IKKgamma, Bcl10 and Carma-1 complexes to a ~2 MDa complex, and increased basal and CD40-induced canonical activity of NF-KB and IKKbeta. In contrast, shRNA-mediated silencing of Tfg decreased CD40-induced IKKbeta activity. Very interestingly, in primary B cells, highest expression of Tfg was detected in marginal zone and B1 B cells, and Carma-1 and Tfg formed complexes in these B cells. Since Carma-1 is required for marginal zone B cell and B1 B cell development, we suggest that a functional interaction between Carma-1 and Tfg contributes to development and maintenance of these cells by means of canonical NF-KB signals.
Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment.
Tumour cells show a varying susceptibility to radiation damage as a function of the current cell cycle phase. While this sensitivity is averaged out in an unperturbed tumour due to unsynchronised cell cycle progression, external stimuli such as radiation or drug doses can induce a resynchronisation of the cell cycle and consequently induce a collective development of radiosensitivity in tumours. Although this effect has been regularly described in experiments it is currently not exploited in clinical practice and thus a large potential for optimisation is missed. We present an agent-based model for three-dimensional tumour spheroid growth which has been combined with an irradiation damage and kinetics model. We predict the dynamic response of the overall tumour radiosensitivity to delivered radiation doses and describe corresponding time windows of increased or decreased radiation sensitivity. The degree of cell cycle resynchronisation in response to radiation delivery was identified as a main determinant of the transient periods of low and high radiosensitivity enhancement. A range of selected clinical fractionation schemes is examined and new triggered schedules are tested which aim to maximise the effect of the radiation-induced sensitivity enhancement. We find that the cell cycle resynchronisation can yield a strong increase in therapy effectiveness, if employed correctly. While the individual timing of sensitive periods will depend on the exact cell and radiation types, enhancement is a universal effect which is present in every tumour and accordingly should be the target of experimental investigation. Experimental observables which can be assessed non-invasively and with high spatio-temporal resolution have to be connected to the radiosensitivity enhancement in order to allow for a possible tumour-specific design of highly efficient treatment schedules based on induced cell cycle synchronisation.
Author Summary: The sensitivity of a cell to a dose of radiation is largely affected by its current position within the cell cycle. While under normal circumstances progression through the cell cycle will be asynchronous in a tumour mass, external influences such as chemo- or radiotherapy can induce a synchronisation. Such a common progression of the inner clock of the cancer cells results in the critical dependence on the effectiveness of any drug or radiation dose on a suitable timing for its administration. We analyse the exact evolution of the radiosensitivity of a sample tumour spheroid in a computer model, which enables us to predict time windows of decreased or increased radiosensitivity. Fractionated radiotherapy schedules can be tailored in order to avoid periods of high resistance and exploit the induced radiosensitivity for an increase in therapy efficiency. We show that the cell cycle effects can drastically alter the outcome of fractionated irradiation schedules in a spheroid cell system. By using the correct observables and continuous monitoring, the cell cycle sensitivity effects have the potential to be integrated into treatment planing of the future and thus to be employed for a better outcome in clinical cancer therapies.
Summary: This retrospective database study assessed 2-year persistence with bisphosphonates or denosumab in a large German cohort of women with a first-time prescription for osteoporosis treatment. Compared with intravenous or oral bisphosphonates, 2-year persistence was 1.5–2 times higher and risk of discontinuation was significantly lower (P < 0.0001) with denosumab.
Introduction: Persistence with osteoporosis therapies is critical for fracture risk reduction. Detailed data on long-term persistence (≥2 years) with bisphosphonates and denosumab are sparse.
Methods: From the German IMS® database, we included women aged 40 years or older with a first-time prescription for bisphosphonates or denosumab between July 2010 and August 2014; patients were followed up until December 2014. The main outcome was treatment discontinuation, with a 60-day permissible gap between filled prescriptions. Two-year persistence was estimated using Kaplan–Meier survival curves, with treatment discontinuation as the failure event. Denosumab was compared with intravenous (i.v.) and oral bisphosphonates separately. Cox proportional hazard ratios (HRs) for the 2-year risk of discontinuation were calculated, with adjustment for age, physician specialty, health insurance status, and previous medication use.
Results: Two-year persistence with denosumab was significantly higher than with i.v. or oral bisphosphonates (39.8 % [n = 21,154] vs 20.9 % [i.v. ibandronate; n = 20,472] and 24.8 % [i.v. zoledronic acid; n = 3966] and 16.7–17.5 % [oral bisphosphonates; n = 114,401]; all P < 0.001). Patients receiving i.v. ibandronate, i.v. zoledronic acid, or oral bisphosphonates had a significantly increased risk of treatment discontinuation than did those receiving denosumab (HR = 1.65, 1.28, and 1.96–2.02, respectively; all P < 0.0001).
Conclusions: Two-year persistence with denosumab was 1.5–2 times higher than with i.v. or oral bisphosphonates, and risk of discontinuation was significantly lower with denosumab than with bisphosphonates. A more detailed understanding of factors affecting medication-taking behavior may improve persistence and thereby reduce rates of fracture.
A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Global modelled (BIOME4) biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP). NPP is strongly influenced by atmospheric carbon dioxide (CO2) concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model) soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210–470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330–960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 kaBP, and between 60 and 65 kaBP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ 13C) of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ 13C based on modelled land carbon storage, and palaeo-archives of ocean δ 13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ 13 C changes.
A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with simulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those inferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large-scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are reflected in BIOME4 simulations of global net primary productivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composition of seawater as terrestrial carbon is depleted in 13C.
Im Rahmen eines Expertenworkshops an der Bundesforschungsanstalt für Forst- und Holzwirtschaft (Hamburg) wurde die Frage erörtert, welche Gefäßpflanzen im norddeutschen Tiefland als typische Waldarten gelten können. Hintergrund dieser Fragestellung ist der Schutz und die nachhaltige Nutzung von Waldökosystemen im Sinne des Übereinkommens der Vereinten Nationen über die biologische Vielfalt.Als Ergebnis wurde eine Liste der im norddeutschen Tiefland typischen, Waldgefäßpflanzenarten vorgelegt. Sie kann als Bewertungshilfe im Zusammenhang mit der Quantifizierung der Pflanzenartenvielfalt in Wäldern dienen und enthält 634 Taxa, die sechs verschiedenen Gruppen zugeordnet werden. Der Gültigkeitsbereich der Liste wird naturräumlich und über eine Walddefinition eingegrenzt. Anwendungsbeispiele werden gegeben. Eine Ausweitung des Ansatzes auf den deutschen Mittelgebirgsraum sowie auf das Alpenvorland und die Alpen ist vorgesehen.