Refine
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- colour model (1)
- flavour model (1)
- quark mass (1)
- quark matter (1)
Institute
- Physik (4)
We perform a study of the possible existence of hybrid stars with color superconducting quark cores using a specific hadronic model in a combination with an NJL-type quark model. It is shown that the constituent mass of the non-strange quarks in vacuum is a very important parameter that controls the beginning of the hadron–quark phase transition. At relatively small values of the mass, the first quark phase that appears is the two-flavor color superconducting (2SC) phase which, at larger densities, is replaced by the color-flavor locked (CFL) phase. At large values of the mass, on the other hand, the phase transition goes from the hadronic phase directly into the CFL phase avoiding the 2SC phase. It appears, however, that the only stable hybrid stars obtained are those with the 2SC quark cores.
We discuss the phase diagram of moderately dense, locally neutral three-flavor quark matter using the framework of an effective model of quantum chromodynamics with a local interaction. The phase diagrams in the plane of temperature and quark chemical potential as well as in the plane of temperature and lepton-number chemical potential are discussed.
We study the effect of neutrino trapping on the phase diagram of dense, locally neutral three-flavor quark matter within the framework of a Nambu--Jona-Lasinio model. In the analysis, dynamically generated quark masses are taken into account self-consistently. The phase diagrams in the plane of temperature and quark chemical potential, as well as in the plane of temperature and lepton-number chemical potential are presented. We show that neutrino trapping favors two-flavor color superconductivity and disfavors the color-flavor-locked phase at intermediate densities of matter. At the same time, the location of the critical line separating the two-flavor color-superconducting phase and the normal phase of quark matter is little affected by the presence of neutrinos. The implications of these results for the evolution of protoneutron stars are briefly discussed. PACS numbers: 12.39.-x 12.38.Aw 26.60.+c
We study the phase diagram of dense, locally neutral three-flavor quark matter within the framework of the Nambu--Jona-Lasinio model. In the analysis, dynamically generated quark masses are taken into account self-consistently. The phase diagram in the plane of temperature and quark chemical potential is presented. The results for two qualitatively different regimes, intermediate and strong diquark coupling strength, are presented. It is shown that the role of gapless phases diminishes with increasing diquark coupling strength.