Refine
Year of publication
Document Type
- Article (12)
- Book (1)
- Conference Proceeding (1)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- ABC transporters (1)
- ATPases (1)
- Cancer detection (1)
- F508del homozygous (1)
- Multimodal imaging (1)
- Pseudo HE-images (1)
- Raman spectroscopy (1)
- X-ray crystallography (1)
- biogeographic legaciese (1)
- cancer (1)
Institute
- Medizin (6)
- Biochemie und Chemie (2)
- Biochemie, Chemie und Pharmazie (1)
- Biodiversität und Klima Forschungszentrum (BiK-F) (1)
- ELEMENTS (1)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Georg-Speyer-Haus (1)
- Institut für Ökologie, Evolution und Diversität (1)
- MPI für Hirnforschung (1)
- Physik (1)
A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.
Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.
This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, |GE | and |GM|, using the ¯pp → μ+μ− reaction at PANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at PANDA, using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is ¯pp → π+π−,due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distribuations of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented.
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process β-decay chains. These nuclei are attributed to the p and rp process.
For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections.
The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
Background: Due to the steadily increasing number of cancer patients worldwide the early diagnosis and treatment of cancer is a major field of research. The diagnosis of cancer is mostly performed by an experienced pathologist via the visual inspection of histo-pathological stained tissue sections. To save valuable time, low quality cryosections are frequently analyzed with diagnostic accuracies that are below those of high quality embedded tissue sections. Thus, alternative means have to be found that enable for fast and accurate diagnosis as the basis of following clinical decision making.
Methods: In this contribution we will show that the combination of the three label-free non-linear imaging modalities CARS (coherent anti-Stokes Raman-scattering), TPEF (two-photon excited autofluorescence) and SHG (second harmonic generation) yields information that can be translated into computational hematoxylin and eosin (HE) images by multivariate statistics. Thereby, a computational HE stain is generated resulting in pseudo-HE overview images that allow for identification of suspicious regions. The latter are analyzed further by Raman-spectroscopy retrieving the tissue’s molecular fingerprint.
Results: The results suggest that the combination of non-linear multimodal imaging and Raman-spectroscopy possesses the potential as a precise and fast tool in routine histopathology.
Conclusions: As the key advantage, both optical methods are non-invasive enabling for further pathological investigations of the same tissue section, e.g. a direct comparison with the current pathological gold-standard.
Lichen-forming fungi are symbiotic organisms that synthesize unique natural products with potential for new drug leads. Here, we explored the pharmacological activity of six lichen extracts (Evernia prunastri, Pseudevernia furfuracea, Umbilicaria pustulata, Umbilicaria crustulosa, Flavoparmelia caperata, Platismatia glauca) in the context of cancer and inflammation using a comprehensive set of 11 functional and biochemical in vitro screening assays. We assayed intracellular Ca2+ levels and cell migration. For cancer, we measured tumor cell proliferation, cell cycle distribution and apoptosis, as well as the angiogenesis-associated proliferation of endothelial cells (ECs). Targeting inflammation, we assayed leukocyte adhesion onto ECs, EC adhesion molecule expression, as well as nitric oxide production and prostaglandin (PG)E2 synthesis in leukocytes. Remarkably, none of the lichen extracts showed any detrimental influence on the viability of ECs. We showed for the first time that extracts of F. caperata induce Ca2+ signaling. Furthermore, extracts from E. prunastri, P. furfuracea, F. caperata, and P. glauca reduced cell migration. Interestingly, F. caperata extracts strongly decreased tumor cell survival. The proliferation of ECs was significantly reduced by E. prunastri, P. furfuracea, and F. caperata extracts. The extracts did not inhibit the activity of inflammatory processes in ECs. However, the pro-inflammatory activation of leukocytes was inhibited by extracts from E. prunastri, P. furfuracea, F. caperata, and P. glauca. After revealing the potential biological activities of lichen extracts by an array of screening tests, a correlation analysis was performed to evaluate particular roles of abundant lichen secondary metabolites, such as atranorin, physodic acid, and protocetraric acid as well as usnic acid in various combinations. Overall, some of the lichen extracts tested in this study exhibit significant pharmacological activity in the context of inflammation and/or cancer, indicating that the group lichen-forming fungi includes promising members for further testing.
Background: Lung disease phenotype varies widely even in the F508del (homozygous) genotype. Leukocyte-driven inflammation is important for pulmonary disease pathogenesis in cystic fibrosis (CF). Blood cytokines correlate negatively with pulmonary function in F508del homozygous patients, and gap junction proteins (GJA) might be related to the influx of blood cells into the lung and influence disease course. We aimed to assess the relationship between GJA1/GJA4 genotypes and the clinical disease phenotype. Methods: One-hundred-and-sixteen homozygous F508del patients (mean age 27 years, m/f 66/50) were recruited from the CF centers of Bonn, Frankfurt, and Amsterdam. Sequence analysis was performed for GJA1 and GJA4. The clinical disease course was assessed over 3 years using pulmonary function tests, body mass index, Pseudomonas aeruginosa colonization, diabetes mellitus, survival to end-stage lung disease, blood and sputum inflammatory markers. Results: Sequence analysis revealed one clinically relevant single nucleotide polymorphism. In this GJA4 variant (rs41266431), homozygous G variant carriers (n = 84/116; 72.4%) had poorer pulmonary function (FVC% pred: mean 78/86, p < 0.040) and survival to end-stage lung disease was lower (p < 0.029). The frequency of P. aeruginosa colonization was not influenced by the genotype, but in those chronically colonized, those with the G/G genotype had reduced pulmonary function (FVC% pred: mean 67/80, p < 0.049). Serum interleukin-8 (median: 12.4/6.7 pg/ml, p < 0.052) and sputum leukocytes (2305/437.5 pg/ml, p < 0.025) were higher for the G/G genotype. Conclusions: In carriers of the A allele (27.6%) the GJA4 variant is associated with significantly better protection against end-stage lung disease and superior pulmonary function test results in F508del homozygous patients. This SNP has the potential of a modifier gene for phenotyping severity of CF lung disease, in addition to the CFTR genotype.
Clinical Trial Registration: The study was registered with ClinicalTrials.gov, number NCT04242420, retrospectively on January 24th, 2020.
Members of the ATP‐binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP‐binding cassette in the nucleotide‐binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs:
Gephyrin is an ubiquitously expressed protein that, in the nervous system, is essential for synaptic anchoring of glycine receptors (GlyRs) and major GABAA receptor subtypes. The binding of gephyrin to the GlyR depends on an amphipathic motif within the large intracellular loop of the GlyRβ subunit. The mouse gephyrin gene consists of 30 exons. Ten of these exons, encoding cassettes of 5–40 amino acids, are subject to alternative splicing (C1–C7, C4′–C6′). Since one of the cassettes, C5′, has recently been reported to exclude GlyRs from GABAergic synapses, we investigated which cassettes are found in gephyrin associated with the GlyR. Gephyrin variants were purified from rat spinal cord, brain, and liver by binding to the glutathione S-transferase-tagged GlyRβ loop or copurified with native GlyR from spinal cord by affinity chromatography and analyzed by mass spectrometry. In addition to C2 and C6′, already known to be prominent, C4 was found to be abundant in gephyrin from all tissues examined. The nonneuronal cassette C3 was easily detected in liver but not in GlyR-associated gephyrin from spinal cord. C5 was present in brain and spinal cord polypeptides, whereas C5′ was coisolated mainly from liver. Notably C5′-containing gephyrin bound to the GlyRβ loop, inconsistent with its proposed selectivity for GABAA receptors. Our data show that GlyR-associated gephyrin, lacking C3, but enriched in C4 without C5, differs from other neuronal and nonneuronal gephyrin isoforms.