Refine
Document Type
- Article (3)
- Conference Proceeding (1)
- Preprint (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- AdS/CFT (1)
- Energy loss (1)
- Heavy quarks (1)
- Kollisionen schwerer Ionen (1)
- LHC (1)
- Quark Gluon Plasma (1)
- Quark-Gluon-Plasma (1)
- heavy ion collisions (1)
- pQCD (1)
Institute
- Physik (5)
Signatures of quark gluon plasma formation in high-energy heavy ion collisions : a critical review
(1998)
Ultra-relativistic heavy ion collisions offer the unique opportunity to probe highly excited dense nuclear matter under controlled laboratory conditions. The compelling driving force for such studies is the expectation that an entirely new form of matter may be created from such reactions. That form of matter, called the Quark Gluon Plasma (QGP), is the QCD analogue of the plasma phase of ordinary atomic matter. However, unlike such ordinary plasmas, the deconfined quanta of a QGP are not directly observable because of the fundamental confining property of the physical QCD vacuum. What is observable are hadronic and leptonic residues of the transient QGP state. There is a large variety of such individual probes.
We compare away-side hadron correlations with respect to tagged heavy quark jets computed within a weakly coupled pQCD and a strongly coupled AdS/CFT model. While both models feature similar far zone Mach and diffusion wakes, the far zone stress features are shown to be too weak to survive thermal broadening at hadron freeze-out. Observable away-side conical correlations are dominated by the jet-induced transverse flow in near zone “Neck” region, which differs significantly for both models. Unlike in AdS/CFT, the induced transverse flow in the Neck zone is too weak in pQCD to produce conical correlations after Cooper-Frye freeze-out. The observation of conical correlations violating Mach’s law would favor the strongly-coupled AdS/CFT string drag dynamics, while their absence would favor weakly-coupled pQCD-based hydrodynamics.
We propose that the measurement of the transverse momentum dependence of the double ratio of the nuclear modification factors of charm and bottom jets, RAAc(pT)/RAAb(pT), in central nuclear collisions at the LHC will provide an especially robust observable that can be used to differentiate Standard Model perturbative QCD predictions from recently proposed strong coupling string drag models derived using the AdS/CFT conjecture.
Nuclear transport models including density- and momentum-dependent mean-field effects are compared to intranuclear-cascade models and tested on recent data on inclusive p-like cross sections for 800A-MeV La+La. We find a remarkable agreement between most model calculations but a systematic disagreement with the measured yield at 20°, possibly indicating a need for modification of nuclear transport properties at high densities.
Intranuclear cascade calculations and fluid dynamical predictions of the kinetic energy flow are compared for collisions of 40Ca + 40Ca and 238U + 238U. The aspect ratio, R13, as obtained from the global analysis, is independent of the bombarding energy for the intranuclear cascade model. Fluid dynamics, on the other hand, predicts a dramatic increase of R13 at medium energies Elab≲200 MeV/nucleon. In fact, R13(Elab) directly reflects the incompressibility of the nuclear matter and can be used to extract the nuclear equation of stat at high densities. Distortions of the flow tensor due to few nucleon scattering are analyzed. Possible procedures to remove this background from experimental data are discussed.