Refine
Document Type
- Article (6)
- Contribution to a Periodical (1)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- CC16 (2)
- uteroglobin (2)
- CD14 (1)
- CD16 (1)
- CD62L (1)
- CLP (1)
- Cancer (1)
- Colon cancer (1)
- Exotics (1)
- Gastrointestinal cancer (1)
Institute
Severe traumatic injury induces phenotypic and functional changes of neutrophils and monocytes
(2021)
Background: Severe traumatic injury has been associated with high susceptibility for the development of secondary complications caused by dysbalanced immune response. As the first line of the cellular immune response, neutrophils and monocytes recruited to the site of tissue damage and/or infection, are divided into three different subsets according to their CD16/CD62L and CD16/CD14 expression, respectively. Their differential functions have not yet been clearly understood. Thus, we evaluated the phenotypic changes of neutrophil and monocyte subsets among their functionality regarding oxidative burst and the phagocytic capacity in severely traumatized patients. Methods: Peripheral blood was withdrawn from severely injured trauma patients (TP; n = 15, ISS ≥ 16) within the first 12 h post-trauma and from healthy volunteers (HV; n = 15) and stimulated with fMLP and PMA. CD16dimCD62Lbright (immature), CD16brightCD62Lbright (mature) and CD16brightCD62Ldim (CD62Llow) neutrophil subsets and CD14brightCD16− (classical), CD14brightCD16+ (intermediate) and CD14dimCD16+ (non-classical) monocyte subsets of HV and TP were either directly analyzed by flow cytometry or the examined subsets of HV were sorted first by fluorescence-activated cell sorting and subsequently analyzed. Subset-specific generation of reactive oxygen species (ROS) and of E. coli bioparticle phagocytosis were evaluated. Results: In TP, the counts of immature neutrophils were significantly increased vs. HV. The numbers of mature and CD62Ldim neutrophils remained unchanged but the production of ROS was significantly enhanced in TP vs. HV and the stimulation with fMLP significantly increased the generation of ROS in the mature and CD62Ldim neutrophils of HV. The counts of phagocyting neutrophils did not change but the mean phagocytic capacity showed an increasing trend in TP. In TP, the monocytes shifted toward the intermediate phenotype, whereas the classical and non-classical monocytes became less abundant. ROS generation was significantly increased in all monocyte subsets in TP vs. HV and PMA stimulation significantly increased those level in both, HV and TP. However, the PMA-induced mean ROS generation was significantly lower in intermediate monocytes of TP vs. HV. Sorting of monocyte and neutrophil subsets revealed a significant increase of ROS and decrease of phagocytic capacity vs. whole blood analysis. Conclusions: Neutrophils and monocytes display a phenotypic shift following severe injury. The increased functional abnormalities of certain subsets may contribute to the dysbalanced immune response and attenuate the antimicrobial function and thus, may represent a potential therapeutic target. Further studies on isolated subsets are necessary for evaluation of their physiological role after severe traumatic injury.
The endoplasmic reticulum–mitochondria encounter structure (ERMES) connects the mitochondrial outer membrane with the ER. Multiple functions have been linked to ERMES, including maintenance of mitochondrial morphology, protein assembly and phospholipid homeostasis. Since the mitochondrial distribution and morphology protein Mdm10 is present in both ERMES and the mitochondrial sorting and assembly machinery (SAM), it is unknown how the ERMES functions are connected on a molecular level. Here we report that conserved surface areas on opposite sides of the Mdm10 β-barrel interact with SAM and ERMES, respectively. We generated point mutants to separate protein assembly (SAM) from morphology and phospholipid homeostasis (ERMES). Our study reveals that the β-barrel channel of Mdm10 serves different functions. Mdm10 promotes the biogenesis of α-helical and β-barrel proteins at SAM and functions as integral membrane anchor of ERMES, demonstrating that SAM-mediated protein assembly is distinct from ER-mitochondria contact sites.
The Born cross sections of the e+e− → D*+D*− and e+e− → D*+D− processes are measured using e+e− collision data collected with the BESIII experiment at center-of-mass energies from 4.085 to 4.600 GeV, corresponding to an integrated luminosity of 15.7 fb−1. The results are consistent with and more precise than the previous measurements by the Belle, Babar and CLEO collaborations. The measurements are essential for understanding the nature of vector charmonium and charmonium-like states.
The spindle assembly checkpoint (SAC) acts as a molecular safeguard in ensuring faithful chromosome transmission during mitosis, which is regulated by a complex interplay between phosphatases and kinases including PLK1. Adenomatous polyposis coli (APC) germline mutations cause aneuploidy and are responsible for familial adenomatous polyposis (FAP). Here we study the role of PLK1 in colon cancer cells with chromosomal instability promoted by APC truncation (APC-ΔC). The expression of APC-ΔC in colon cells reduces the accumulation of mitotic cells upon PLK1 inhibition, accelerates mitotic exit and increases the survival of cells with enhanced chromosomal abnormalities. The inhibition of PLK1 in mitotic, APC-∆C-expressing cells reduces the kinetochore levels of Aurora B and hampers the recruitment of SAC component suggesting a compromised mitotic checkpoint. Furthermore, Plk1 inhibition (RNAi, pharmacological compounds) promotes the development of adenomatous polyps in two independent ApcMin/+ mouse models. High PLK1 expression increases the survival of colon cancer patients expressing a truncated APC significantly.
Sepsis is a serious clinical condition which can cause life-threatening organ dysfunction, and has limited therapeutic options. The paradigm of limiting excessive inflammation and promoting anti-inflammatory responses is a simplified concept. Yet, the absence of intrinsic anti-inflammatory signaling at the early stage of an infection can lead to an exaggerated activation of immune cells, including monocytes and macrophages. There is emerging evidence that endogenous molecules control those mechanisms. Here we aimed to identify and describe the dynamic changes in monocyte and macrophage subsets and lung damage in CL57BL/6N mice undergoing blunt chest trauma with subsequent cecal ligation and puncture. We showed that early an increase in systemic and activated Ly6C+CD11b+CD45+Ly6G− monocytes was paralleled by their increased emigration into lungs. The ratio of pro-inflammatory Ly6ChighCD11b+CD45+Ly6G− to patrolling Ly6ClowCD11b+CD45+Ly6G− monocytes significantly increased in blood, lungs and bronchoalveolar lavage fluid (BALF) suggesting an early transition to inflammatory phenotypes during early sepsis development. Similar to monocytes, the level of pro-inflammatory Ly6ChighCD45+F4/80+ macrophages increased in lungs and BALF, while tissue repairing Ly6ClowCD45+F4/80+ macrophages declined in BALF. Levels of inflammatory mediators TNF-α and MCP-1 in blood and RAGE in lungs and BALF were elevated, and besides their boosting of inflammation via the recruitment of cells, they may promote monocyte and macrophage polarization, respectively, toward the pro-inflammatory phenotype. Neutralization of uteroglobin increased pro-inflammatory cytokine levels, activation of inflammatory phenotypes and their recruitment to lungs; concurrent with increased pulmonary damage in septic mice. In in vitro experiments, the influence of uteroglobin on monocyte functions including migratory behavior, TGF-β1 expression, cytotoxicity and viability were proven. These results highlight an important role of endogenous uteroglobin as intrinsic anti-inflammatory signal upon sepsis-induced early lung injury, which modules the early monocyte/macrophages driven inflammation.
Blunt thoracic trauma (TxT) deteriorates clinical post-injury outcomes. Ongoing inflammatory changes promote the development of post-traumatic complications, frequently causing Acute Lung Injury (ALI). Club Cell Protein (CC)16, a pulmonary anti-inflammatory protein, correlates with lung damage following TxT. Whether CC16-neutralization influences the inflammatory course during ALI is elusive. Ninety-six male CL57BL/6N mice underwent a double hit model of TxT and cecal ligation puncture (CLP, 24 h post-TxT). Shams underwent surgical procedures. CC16 was neutralized by the intratracheal application of an anti-CC16-antibody, either after TxT (early) or following CLP (late). Euthanasia was performed at 6 or 24 h post-CLP. Systemic and pulmonary levels of IL-6, IL-1β, and CXCL5 were determined, the neutrophils were quantified in the bronchoalveolar lavage fluid, and histomorphological lung damage was assessed. ALI induced a significant systemic IL-6 increase among all groups, while the local inflammatory response was most prominent after 24 h in the double-hit groups as compared to the shams. Significantly increased neutrophilic infiltration upon double hit was paralleled with the enhanced lung damage in all groups as compared to the sham, after 6 and 24 h. Neutralization of CC16 did not change the systemic inflammation. However, early CC16-neutralization increased the neutrophilic infiltration and lung injury at 6 h post-CLP, while 24 h later, the lung injury was reduced. Late CC16-neutralization increased neutrophilic infiltration, 24 h post-CLP, and was concurrent with an enhanced lung injury. The data confirmed the anti-inflammatory potential of endogenous CC16 in the murine double-hit model of ALI.