Refine
Year of publication
Document Type
- Article (16)
- Doctoral Thesis (1)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- differentiation (3)
- invasion (3)
- p21 (3)
- preeclampsia (3)
- Aurora A (2)
- BCL6 (2)
- CDKN1A (2)
- COVID-19 (2)
- Plk1 inhibitors (2)
- RITA (2)
Institute
- Medizin (16)
- Biochemie und Chemie (1)
In der vorliegenden Dissertation stand die Aufklärung der Funktion und Regulation von p21 in der Mitose im Mittelpunkt. p21 ist als Cdk-Inhibitor und Schlüsselregulator bekannt, der in viele fundamentale zelluläre Prozesse involviert ist: Zellzyklusregulation, Apoptose, Seneszenz, Zellmigration und Dynamik des Zytoskeletts, Transkription, Differenzierung sowie DNA-Reparatur, aber auch in die Umprogrammierung induzierter pluripotenter Stammzellen (Besson et al. 2008; Abbas und Dutta 2009; Jung et al. 2010).
Die unkontrollierte Proliferation von Zellen ist mit der Tumorgenese assoziiert und wird unter anderem durch die Fehlregulation von p21, aber auch durch die wichtigen mitotischen Kinasen Cdk1, im Komplex mit ihrer regulatorischen Untereinheit Cyclin B1, sowie Plk1 bedingt. Zudem ist das Fehlen von p21 oder die Fehllokalisation in das Zytoplasma mit einer schlechteren Prognose für den Patienten und Chemotherapie-Resistenz von Tumoren verbunden (Abukhdeir und Park 2008). Aufgrund der zunehmenden Inzidenz und Mortalität von Krebserkrankungen ist es daher von besonderem klinischem Interesse, die molekularen Ursachen für die Entstehung maligner Tumorerkrankungen aufzuklären. Bislang existieren kaum Studien über welche molekularen Mechanismen die Funktionen von p21, dem wichtigsten Cdk-Inhibitor, der zum Beispiel durch die Anwendung niedermolekularer Inhibitoren wie BI 2536, das sich bereits in klinischen Phase II Studien befindet (Strebhardt 2010), beeinflusst wird, während der Mitose reguliert werden.
In der vorliegenden Dissertation wurde daher die physiologische Rolle des Cdk-Inhibitors bzw. Regulators p21 während der Mitose untersucht und mit der Kinaseaktivität von Cdk1/Cyclin B1, wie auch Plk1 korreliert. Es konnte gezeigt werden, dass p21 während der Mitose stark exprimiert wird und dass mitotisches p21 in verschiedenen Krebszelllinien unabhängig von dem p53-Status in einer phosphorylierten Form vorkommt, welche mit der Aktivität von Cdk1 und weniger mit der von Cdk2 assoziiert ist. Durch Untersuchungen der isogenen HCT116-Zelllinien mit und ohne p21 wurde aufgezeigt, wie wichtig p21 für den ordnungsgemäßen Ablauf der Mitose ist. Ohne p21 sind sowohl die Anaphase wie auch die Zytokinese verlängert, die Zellen ordnen die Chromosomen fehlerhaft in der Metaphaseplatte an (congression Fehler), besitzen weitaus mehr lagging Chromosomen und fast 20 % der Zellen weisen im Versuchsverlauf Polyploidie auf. Durch den Verlust des Cdk-Regulators p21 kommt es zur Fehlregulation von Cdk1 und seiner Substrate (wie MCAK) und es treten die oben beschriebenen Probleme auf.
Weiterhin phosphoryliert Cdk1/Cyclin B1 p21 an Ser-130 in vitro und ex vivo in der frühen Phase der Mitose, der Prophase bzw. Prometaphase. Die nicht phosphorylierbare p21 Form S130A befindet sich hauptsächlich im Zellkern und führt zu vermehrtem Auftreten von congression Fehlern, während die S130D-Mutante, die die Phosphorylierung durch Cdk1 vortäuscht, schneller degradiert wird und zudem den Phänotyp der HCT116 p21-/- Zellen verstärkt. Zellen, die S130D exprimieren, benötigen mehr Zeit für das Durchlaufen der Mitose. Hier ist vor allem die Metaphase stark verlängert, aber auch Anaphase und Zytokinese. Dies führt zu congression Fehlern und zu Polyploidie. Diese Ergebnisse bestätigen, wie wichtig die zeitlich korrekte Phosphorylierung von p21 und die dadurch vermittelte Aktivierung von Cdk1/Cyclin B1 ist.
Darüber hinaus stabilisiert die Suppression von Plk1 das p21 Protein, was darauf hinweist, dass die Degradation von p21 während der Prometaphase von Plk1 kontrolliert wird. Dies wird von der Tatsache unterstützt, dass Ser-114, wie auch Ser116 von Plk1 in vitro phosphoryliert wird. Die Deregulation von p21 durch Plk1, SS114/116AA bzw. SS114/116DD induziert Chromosomenfehler, wodurch die molekularen Mechanismen, warum fehlreguliertes Plk1 die Tumorgenese fördert, hervorgehoben werden.
Nach Abschluss der bisherigen Untersuchungen steht fest, dass man sich von der starren Rolle von p21 als Tumorsuppressor und Akteur während der G1/S-Phase lösen muss. Der Cdk-Inhibitor p21 trägt entscheidend zur mitotischen Progression bei, vor allem bedingt durch die zeitlich ordnungsgemäße Inaktivierung bzw. Aktivierung von Cdk1/Cyclin B1, der Kinase, die wiederum zahlreiche für die Mitose essentielle Proteine reguliert. In Zukunft muss zum besseren Verständnis der Rolle von p21 in der Mitose die genaue Abfolge der Ereignisse unter Einbeziehung der Degradationsmechanismen eingehender untersucht werden.
The coronavirus disease 2019 COVID-19 pandemic is rapidly spreading worldwide and is becoming a major public health crisis. Increasing evidence demonstrates a strong correlation between obesity and the COVID-19 disease. We have summarized recent studies and addressed the impact of obesity on COVID-19 in terms of hospitalization, severity, mortality, and patient outcome. We discuss the potential molecular mechanisms whereby obesity contributes to the pathogenesis of COVID-19. In addition to obesity-related deregulated immune response, chronic inflammation, endothelium imbalance, metabolic dysfunction, and its associated comorbidities, dysfunctional mesenchymal stem cells/adipose-derived mesenchymal stem cells may also play crucial roles in fueling systemic inflammation contributing to the cytokine storm and promoting pulmonary fibrosis causing lung functional failure, characteristic of severe COVID-19. Moreover, obesity may also compromise motile cilia on airway epithelial cells and impair functioning of the mucociliary escalators, reducing the clearance of severe acute respiratory syndrome coronavirus (SARS-CoV-2). Obese diseased adipose tissues overexpress the receptors and proteases for the SARS-CoV-2 entry, implicating its possible roles as virus reservoir and accelerator reinforcing violent systemic inflammation and immune response. Finally, anti-inflammatory cytokines like anti-interleukin 6 and administration of mesenchymal stromal/stem cells may serve as potential immune modulatory therapies for supportively combating COVID-19. Obesity is conversely related to the development of COVID-19 through numerous molecular mechanisms and individuals with obesity belong to the COVID-19-susceptible population requiring more protective measures.
Preeclampsia (PE), a gestational hypertensive disease originating from the placenta, is characterized by an imbalance of various cellular processes. The cell cycle regulator p21Cip1/CDKN1A (p21) and its family members p27 and p57 regulate signaling pathways fundamental to placental development. The aim of the present study was to enlighten the individual roles of these cell cycle regulators in placental development and their molecular involvement in the pathogenesis of PE. The expression and localization of p21, phospho-p21 (Thr-145), p27, and p57 was immunohistochemically analyzed in placental tissues from patients with early-onset PE, early-onset PE complicated by the HELLP (hemolysis, elevated liver enzymes and low platelet count) syndrome as well as late-onset PE compared to their corresponding control tissues from well-matched women undergoing caesarean sections. The gene level was evaluated using real-time quantitative PCR. We demonstrate that the delivery mode strongly influenced placental gene expression, especially for CDKN1A (p21) and CDKN1B (p27), which were significantly upregulated in response to labor. Cell cycle regulators were highly expressed in first trimester placentas and impacted by hypoxic conditions. In support of these observations, p21 protein was abundant in trophoblast organoids and hypoxia reduced its gene expression. Microarray analysis of the trophoblastic BeWo cell line depleted of p21 revealed various interesting candidate genes and signaling pathways for the fusion process. The level of p21 was reduced in fusing cytotrophoblasts in early-onset PE placentas and depletion of p21 led to reduced expression of fusion-related genes such as syncytin-2 and human chorionic gonadotropin (β-hCG), which adversely affected the fusion capability of trophoblastic cells. These data highlight that cell cycle regulators are important for the development of the placenta. Interfering with p21 influences multiple pathways related to the pathogenesis of PE.
Human placentation is a highly invasive process. Deficiency in the invasiveness of trophoblasts is associated with a spectrum of gestational diseases, such as preeclampsia (PE). The oncogene B-cell lymphoma 6 (BCL6) is involved in the migration and invasion of various malignant cells. Intriguingly, its expression is deregulated in preeclamptic placentas. We have reported that BCL6 is required for the proliferation, survival, fusion, and syncytialization of trophoblasts. In the present work, we show that the inhibition of BCL6, either by its gene silencing or by using specific small molecule inhibitors, impairs the migration and invasion of trophoblastic cells, by reducing cell adhesion and compromising the dynamics of the actin cytoskeleton. Moreover, the suppression of BCL6 weakens the signals of the phosphorylated focal adhesion kinase, Akt/protein kinase B, and extracellular regulated kinase 1/2, accompanied by more stationary, but less migratory, cells. Interestingly, transcriptomic analyses reveal that a small interfering RNA-induced reduction of BCL6 decreases the levels of numerous genes, such as p21 activated kinase 1, myosin light chain kinase, and gamma actin related to cell adhesion, actin dynamics, and cell migration. These data suggest BCL6 as a crucial player in the migration and invasion of trophoblasts in the early stages of placental development through the regulation of various genes associated with the migratory machinery.
RITA, the RBP‐J interacting and tubulin‐associated protein, has been reported to be related to tumor development, but the underlying mechanisms are not understood. Since RITA interacts with tubulin and coats microtubules of the cytoskeleton, we hypothesized that it is involved in cell motility. We show here that depletion of RITA reduces cell migration and invasion of diverse cancer cell lines and mouse embryonic fibroblasts. Cells depleted of RITA display stable focal adhesions (FA) with elevated active integrin, phosphorylated focal adhesion kinase, and paxillin. This is accompanied by enlarged size and disturbed turnover of FA. These cells also demonstrate increased polymerized tubulin. Interestingly, RITA is precipitated with the lipoma‐preferred partner (LPP), which is critical in actin cytoskeleton remodeling and cell migration. Suppression of RITA results in reduced LPP and α‐actinin at FA leading to compromised focal adhesion turnover and actin dynamics. This study identifies RITA as a novel crucial player in cell migration and invasion by affecting the turnover of FA through its interference with the dynamics of actin filaments and microtubules. Its deregulation may contribute to malignant progression.
Adipose-derived mesenchymal stem cells (ASCs) have crucial functions, but their roles in obesity are not well defined. We show here that ASCs from obese individuals have defective primary cilia, which are shortened and unable to properly respond to stimuli. Impaired cilia compromise ASC functionalities. Exposure to obesity-related hypoxia and cytokines shortens cilia of lean ASCs. Like obese ASCs, lean ASCs treated with interleukin-6 are deficient in the Hedgehog pathway, and their differentiation capability is associated with increased ciliary disassembly genes like AURKA. Interestingly, inhibition of Aurora A or its downstream target the histone deacetylase 6 rescues the cilium length and function of obese ASCs. This work highlights a mechanism whereby defective cilia render ASCs dysfunctional, resulting in diseased adipose tissue. Impaired cilia in ASCs may be a key event in the pathogenesis of obesity, and its correction might provide an alternative strategy for combating obesity and its associated diseases.
The multifaceted p21 (Cip1/Waf1/CDKN1A) in cell differentiation, migration and cancer therapy
(2019)
Loss of cell cycle control is characteristic of tumorigenesis. The protein p21 is the founding member of cyclin-dependent kinase inhibitors and an important versatile cell cycle protein. p21 is transcriptionally controlled by p53 and p53-independent pathways. Its expression is increased in response to various intra- and extracellular stimuli to arrest the cell cycle ensuring genomic stability. Apart from its roles in cell cycle regulation including mitosis, p21 is involved in differentiation, cell migration, cytoskeletal dynamics, apoptosis, transcription, DNA repair, reprogramming of induced pluripotent stem cells, autophagy and the onset of senescence. p21 acts either as a tumor suppressor or as an oncogene depending largely on the cellular context, its subcellular localization and posttranslational modifications. In the present review, we briefly mention the general functions of p21 and summarize its roles in differentiation, migration and invasion in detail. Finally, regarding its dual role as tumor suppressor and oncogene, we highlight the potential, difficulties and risks of using p21 as a biomarker as well as a therapeutic target.
A message from the human placenta: structural and immunomodulatory defense against SARS-CoV-2
(2020)
The outbreak of the coronavirus disease 2019 (COVID-19) pandemic has caused a global public health crisis. Viral infections may predispose pregnant women to a higher rate of pregnancy complications, including preterm births, miscarriage and stillbirth. Despite reports of neonatal COVID-19, definitive proof of vertical transmission is still lacking. In this review, we summarize studies regarding the potential evidence for transplacental transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), characterize the expression of its receptors and proteases, describe the placental pathology and analyze virus-host interactions at the maternal-fetal interface. We focus on the syncytium, the barrier between mother and fetus, and describe in detail its physical andstructuraldefenseagainstviralinfections. Wefurtherdiscussthepotentialmolecularmechanisms, whereby the placenta serves as a defense front against pathogens by regulating the interferon type III signaling, microRNA-triggered autophagy and the nuclear factor-κB pathway. Based on these data, we conclude that vertical transmission may occur but rare, ascribed to the potent physical barrier, the fine-regulatedplacentalimmunedefenseandmodulationstrategies. Particularly,immunomodulatory mechanismsemployedbytheplacentamaymitigateviolentimmuneresponse,maybesoftencytokine storm tightly associated with severely ill COVID-19 patients, possibly minimizing cell and tissue damages, and potentially reducing SARS-CoV-2 transmission.
Adipose-derived mesenchymal stem cells (ASCs) are considered to be a useful tool for regenerative medicine, owing to their capabilities in differentiation, self-renewal, and immunomodulation. These cells have become a focus in the clinical setting due to their abundance and easy isolation. However, ASCs from different depots are not well characterized. Here, we analyzed the functional similarities and differences of subcutaneous and visceral ASCs. Subcutaneous ASCs have an extraordinarily directed mode of motility and a highly dynamic focal adhesion turnover, even though they share similar surface markers, whereas visceral ASCs move in an undirected random pattern with more stable focal adhesions. Visceral ASCs have a higher potential to differentiate into adipogenic and osteogenic cells when compared to subcutaneous ASCs. In line with these observations, visceral ASCs demonstrate a more active sonic hedgehog pathway that is linked to a high expression of cilia/differentiation related genes. Moreover, visceral ASCs secrete higher levels of inflammatory cytokines interleukin-6, interleukin-8, and tumor necrosis factor α relative to subcutaneous ASCs. These findings highlight, that both ASC subpopulations share multiple cellular features, but significantly differ in their functions. The functional diversity of ASCs depends on their origin, cellular context and surrounding microenvironment within adipose tissues. The data provide important insight into the biology of ASCs, which might be useful in choosing the adequate ASC subpopulation for regenerative therapies.
Preeclampsia (PE) remains a leading cause of maternal and perinatal mortality and morbidity worldwide. Its pathogenesis has not been fully elucidated and no causal therapy is currently available. It is of clinical relevance to decipher novel molecular biomarkers. RITA (RBP-J (recombination signal binding protein J)-interacting and tubulin-associated protein) has been identified as a negative modulator of the Notch pathway and as a microtubule-associated protein important for cell migration and invasion. In the present work, we have systematically studied RITA’s expression in primary placental tissues from patients with early- and late-onset PE as well as in various trophoblastic cell lines. RITA is expressed in primary placental tissues throughout gestation, especially in proliferative villous cytotrophoblasts, in the terminally differentiated syncytiotrophoblast, and in migrating extravillous trophoblasts. RITA’s messenger RNA (mRNA) level is decreased in primary tissue samples from early-onset PE patients. The deficiency of RITA impairs the motility and invasion capacity of trophoblastic cell lines, and compromises the fusion ability of trophoblast-derived choriocarcinoma cells. These data suggest that RITA may play important roles in the development of the placenta and possibly in the pathogenesis of PE.