Refine
Year of publication
Language
- English (787)
Has Fulltext
- yes (787)
Is part of the Bibliography
- no (787)
Keywords
- Heavy Ion Experiments (14)
- Hadron-Hadron scattering (experiments) (12)
- Heavy-ion collision (6)
- Hadron-Hadron Scattering (3)
- Heavy Ions (3)
- LHC (3)
- ALICE experiment (2)
- Charm physics (2)
- Diffraction (2)
- Elastic scattering (2)
Institute
- Physik (739)
- Frankfurt Institute for Advanced Studies (FIAS) (676)
- Informatik (605)
- Hochschulrechenzentrum (2)
- Medizin (1)
We report on the rapidity and centrality dependence of proton and antiproton transverse mass distributions from 197Au + 197Au collisions at sqrt[sNN ]=130 GeV as measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Our results are from the rapidity and transverse momentum range of |y| <0.5 and 0.35< pt <1.00 GeV/c . For both protons and antiprotons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y| <0.5 . Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton (antiproton) yields and transverse mass distributions the possibility of prehadronic collective expansion may have to be taken into account.
We report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2 < pT < 6 GeV/c in p + p collisions at √s = 200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT , indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models.
We report a high precision measurement of the transverse single spin asymmetry AN at the center of mass energy √s=200 GeV in elastic proton–proton scattering by the STAR experiment at RHIC. The AN was measured in the four-momentum transfer squared t range 0.003⩽|t|⩽0.035 (GeV/c)2, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of AN and its t-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this √s, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton–proton elastic scattering.
STAR's measurements of directed flow (v1) around midrapidity for π±, K±, K0S, p and p¯ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative v1(y) slope is observed for most of produced particles (π±, K±, K0S and p¯). The proton v1(y) slope is found to be much closer to zero compared to antiprotons. A sizable difference is seen between v1 of protons and antiprotons in 5-30% central collisions. The v1 excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. Anti-flow alone cannot explain the centrality dependence of the difference between the v1(y) slopes of protons and antiprotons.
STAR's measurements of directed flow (v1) around midrapidity for π±, K±, K0S, p and p¯ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative v1(y) slope is observed for most of produced particles (π±, K±, K0S and p¯). In 5-30% central collisions a sizable difference is present between the v1(y) slope of protons and antiprotons, with the former being consistent with zero within errors. The v1 excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of v1 for both pions and protons, none of them can describe v1(y) for pions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the v1(y) slopes of protons and antiprotons.
The STAR Collaboration at the Relativistic Heavy Ion Collider presents measurements of 𝐽/𝜓→𝑒+𝑒− at midrapidity and high transverse momentum (𝑝𝑇>5 GeV/𝑐) in 𝑝+𝑝 and central Cu+Cu collisions at √𝑠𝑁𝑁=200 GeV. The inclusive 𝐽/𝜓 production cross section for Cu+Cu collisions is found to be consistent at high 𝑝𝑇 with the binary collision-scaled cross section for 𝑝+𝑝 collisions. At a confidence level of 97%, this is in contrast to a suppression of 𝐽/𝜓 production observed at lower 𝑝𝑇. Azimuthal correlations of 𝐽/𝜓 with charged hadrons in 𝑝+𝑝 collisions provide an estimate of the contribution of 𝐵-hadron decays to 𝐽/𝜓 production of 13%±5%.
We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.
We report inclusive photon measurements about midrapidity ( |y| <0.5 ) from 197 Au + 197 Au collisions at sqrt[sNN ]=130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta E/E ~ 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum ( pt ) spectra of pi 0 mesons about midrapidity ( |y| <1 ) via the pi 0 --> gamma gamma decay channel. The fractional contribution of the pi 0 --> gamma gamma decay to the inclusive photon spectrum decreases by 20%±5% between pt =1.65 GeV/c and pt =2.4 GeV/c in the most central events, indicating that relative to pi 0 --> gamma gamma decay the contribution of other photon sources is substantially increasing.
We present the first large-acceptance measurement of event-wise mean transverse momentum <pt> fluctuations for Au-Au collisions at nucleon-nucleon center-of-momentum collision energy sqrt[sNN] = 130 GeV. The observed nonstatistical <pt> fluctuations substantially exceed in magnitude fluctuations expected from the finite number of particles produced in a typical collision. The r.m.s. fractional width excess of the event-wise <pt> distribution is 13.7±0.1(stat) ±1.3(syst)% relative to a statistical reference, for the 15% most-central collisions and for charged hadrons within pseudorapidity range | eta |<1,2 pi azimuth, and 0.15 <= pt <= 2 GeV/c. The width excess varies smoothly but nonmonotonically with collision centrality and does not display rapid changes with centrality which might indicate the presence of critical fluctuations. The reported <pt> fluctuation excess is qualitatively larger than those observed at lower energies and differs markedly from theoretical expectations. Contributions to <pt> fluctuations from semihard parton scattering in the initial state and dissipation in the bulk colored medium are discussed.
We present STAR measurements of the azimuthal anisotropy parameter v2 and the binary-collision scaled centrality ratio RCP for kaons and lambdas ( Lambda + Lambda -bar) at midrapidity in Au+Au collisions at sqrt[sNN]=200 GeV. In combination, the v2 and RCP particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish pT ~ 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K0S and Lambda + Lambda -bar v2 values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.