Refine
Year of publication
Document Type
- Article (31)
Language
- English (31)
Has Fulltext
- yes (31)
Is part of the Bibliography
- no (31)
Keywords
- quantitative MRI (5)
- diffusion tensor imaging (3)
- epilepsy (3)
- multiple sclerosis (3)
- Quantitative MRI (2)
- Relaxometry (2)
- brain imaging (2)
- glioblastoma (2)
- graph theory (2)
- neurodegeneration (2)
Studying the role of human parietal cortex in visuospatial attention with concurrent TMS-fMRI
(2010)
Combining transcranial magnetic stimulation (TMS) with concurrent functional magnetic resonance imaging (fMRI) allows study of how local brain stimulation may causally affect activity in remote brain regions. Here, we applied bursts of high- or low-intensity TMS over right posterior parietal cortex, during a task requiring sustained covert visuospatial attention to either the left or right hemifield, or in a neutral control condition, while recording blood oxygenation-level–dependent signal with a posterior MR surface coil. As expected, the active attention conditions activated components of the well-described “attention network,” as compared with the neutral baseline. Also as expected, when comparing left minus right attention, or vice versa, contralateral occipital visual cortex was activated. The critical new finding was that the impact of high- minus low-intensity parietal TMS upon these visual regions depended on the currently attended side. High- minus low-intensity parietal TMS increased the difference between contralateral versus ipsilateral attention in right extrastriate visual cortex. A related albeit less pronounced pattern was found for left extrastriate visual cortex. Our results confirm that right human parietal cortex can exert attention-dependent influences on occipital visual cortex and provide a proof of concept for the use of concurrent TMS–fMRI in studying how remote influences can vary in a purely top–down manner with attentional demands. Key words: concurrent TMS--fMRI, posterior parietal cortex, statedependence, visuospatial attention
Cortical changes in epilepsy patients with focal cortical dysplasia: new insights with T2 mapping
(2020)
Background: In epilepsy patients with focal cortical dysplasia (FCD) as the epileptogenic focus, global cortical signal changes are generally not visible on conventional MRI. However, epileptic seizures or antiepileptic medication might affect normal-appearing cerebral cortex and lead to subtle damage. Purpose: To investigate cortical properties outside FCD regions with T2-relaxometry. Study Type: Prospective study. Subjects: Sixteen patients with epilepsy and FCD and 16 age-/sex-matched healthy controls. Field Strength/Sequence: 3T, fast spin-echo T2-mapping, fluid-attenuated inversion recovery (FLAIR), and synthetic T1-weighted magnetization-prepared rapid acquisition of gradient-echoes (MP-RAGE) datasets derived from T1-maps. Assessment: Reconstruction of the white matter and cortical surfaces based on MP-RAGE structural images was performed to extract cortical T2 values, excluding lesion areas. Three independent raters confirmed that morphological cortical/juxtacortical changes in the conventional FLAIR datasets outside the FCD areas were definitely absent for all patients. Averaged global cortical T2 values were compared between groups. Furthermore, group comparisons of regional cortical T2 values were performed using a surface-based approach. Tests for correlations with clinical parameters were carried out. Statistical Tests: General linear model analysis, permutation simulations, paired and unpaired t-tests, and Pearson correlations. Results: Cortical T2 values were increased outside FCD regions in patients (83.4 ± 2.1 msec, control group 81.4 ± 2.1 msec, P = 0.01). T2 increases were widespread, affecting mainly frontal, but also parietal and temporal regions of both hemispheres. Significant correlations were not observed (P ≥ 0.55) between cortical T2 values in the patient group and the number of seizures in the last 3 months or the number of anticonvulsive drugs in the medical history. Data Conclusion: Widespread increases in cortical T2 in FCD-associated epilepsy patients were found, suggesting that structural epilepsy in patients with FCD is not only a symptom of a focal cerebral lesion, but also leads to global cortical damage not visible on conventional MRI. Evidence Level: 21. Technical efficacy Stage: 3 J. MAGN. RESON. IMAGING 2020;52:1783–1789.
There is mounting evidence that aerobic exercise has a positive effect on cognitive functions in older adults. To date, little is known about the neurometabolic and molecular mechanisms underlying this positive effect. The present study used magnetic resonance spectroscopy and quantitative MRI to systematically explore the effects of physical activity on human brain metabolism and grey matter (GM) volume in healthy aging. This is a randomised controlled assessor-blinded two-armed trial (n=53) to explore exercise-induced neuroprotective and metabolic effects on the brain in cognitively healthy older adults. Participants (age >65) were allocated to a 12-week individualised aerobic exercise programme intervention (n=29) or a 12-week waiting control group (n=24). The main outcomes were the change in cerebral metabolism and its association to brain-derived neurotrophic factor (BDNF) levels as well as changes in GM volume. We found that cerebral choline concentrations remained stable after 12 weeks of aerobic exercise in the intervention group, whereas they increased in the waiting control group. No effect of training was seen on cerebral N-acetyl-aspartate concentrations, nor on markers of neuronal energy reserve or BDNF levels. Further, we observed no change in cortical GM volume in response to aerobic exercise. The finding of stable choline concentrations in the intervention group over the 3 month period might indicate a neuroprotective effect of aerobic exercise. Choline might constitute a valid marker for an effect of aerobic exercise on cerebral metabolism in healthy aging.
Purpose: To investigate cortical thickness and cortical quantitative T2 values as imaging markers of microstructural tissue damage in patients with unilateral high-grade internal carotid artery occlusive disease (ICAOD).
Methods: A total of 22 patients with ≥70% stenosis (mean age 64.8 years) and 20 older healthy control subjects (mean age 70.8 years) underwent structural magnetic resonance imaging (MRI) and high-resolution quantitative (q)T2 mapping. Generalized linear mixed models (GLMM) controlling for age and white matter lesion volume were employed to investigate the effect of ICAOD on imaging parameters of cortical microstructural integrity in multivariate analyses.
Results: There was a significant main effect (p < 0.05) of the group (patients/controls) on both cortical thickness and cortical qT2 values with cortical thinning and increased cortical qT2 in patients compared to controls, irrespective of the hemisphere. The presence of upstream carotid stenosis had a significant main effect on cortical qT2 values (p = 0.01) leading to increased qT2 in the poststenotic hemisphere, which was not found for cortical thickness. The GLMM showed that in general cortical thickness was decreased and cortical qT2 values were increased with increasing age (p < 0.05).
Conclusion: Unilateral high-grade carotid occlusive disease is associated with widespread cortical thinning and prolongation of cortical qT2, presumably reflecting hypoperfusion-related microstructural cortical damage similar to accelerated aging of the cerebral cortex. Cortical thinning and increase of cortical qT2 seem to reflect different aspects and different pathophysiological states of cortical degeneration. Quantitative T2 mapping might be a sensitive imaging biomarker for early cortical microstructural damage.
Background: Cannabis proofed to be effective in pain relief, but one major side effect is its influence on memory in humans. Therefore, the role of memory on central processing of nociceptive information was investigated in healthy volunteers.
Methods: In a placebo-controlled cross-over study including 22 healthy subjects, the effect of 20 mg oral Δ9-tetrahydrocannabinol (THC) on memory involving nociceptive sensations was studied, using a delayed stimulus discrimination task (DSDT). To control for nociceptive specificity, a similar DSDT-based study was performed in a subgroup of thirteen subjects, using visual stimuli.
Results: For each nociceptive stimulus pair, the second stimulus was associated with stronger and more extended brain activations than the first stimulus. These differences disappeared after THC administration. The THC effects were mainly located in two clusters comprising the insula and inferior frontal cortex in the right hemisphere, and the caudate nucleus and putamen bilaterally. These cerebral effects were accompanied in the DSDT by a significant reduction of correct ratings from 41.61% to 37.05% after THC administration (rm-ANOVA interaction "drug" by "measurement": F (1,21) = 4.685, p = 0.042). Rating performance was also reduced for the visual DSDT (69.87% to 54.35%; rm-ANOVA interaction of "drug" by "measurement": F (1,12) = 13.478, p = 0.003) and reflected in a reduction of stimulus-related brain deactivations in the bilateral angular gyrus.
Conclusions: Results suggest that part of the effect of THC on pain may be related to memory effects. THC reduced the performance in DSDT of nociceptive and visual stimuli, which was accompanied by significant effects on brain activations. However, a pain specificity of these effects cannot be deduced from the data presented.
Oxygenation-sensitive spin relaxation time T2′ and relaxation rate R2′ (1/T2′) are presumed to be markers of the cerebral oxygen extraction fraction (OEF) in acute ischemic stroke. In this study, we investigate the relationship of T2′/R2′ with dynamic susceptibility contrast-based relative cerebral blood flow (rCBF) in acute ischemic stroke to assess their plausibility as surrogate markers of the ischemic penumbra. Twenty-one consecutive patients with internal carotid artery and/or middle cerebral artery occlusion were studied at 3.0 T. A physiological model of the cerebral vasculature (VM) was used to process PWI raw data in addition to a conventional deconvolution technique. T2′, R2′, and rCBF values were extracted from the ischemic core and hypoperfused areas. Within hypoperfused tissue, no correlation was found between deconvolved rCBF and T2′ (r = −0.05, p = 0.788), or R2′ (r = 0.039, p = 0.836). In contrast, we found a strong positive correlation with T2′ (r = 0.444, p = 0.006) and negative correlation with R2′ (r = −0.494, p = 0.0025) for rCBFVM, indicating increasing OEF with decreasing CBF and that rCBF based on the vascular model may be more closely related to metabolic disturbances. Further research to refine and validate these techniques may enable their use as MRI-based surrogate markers of the ischemic penumbra for selecting stroke patients for interventional treatment strategies.
Longitudinal changes of cortical microstructure in Parkinson's disease assessed with T1 relaxometry
(2016)
Background: Histological evidence suggests that pathology in Parkinson's disease (PD) goes beyond nigrostriatal degeneration and also affects the cerebral cortex. Quantitative MRI (qMRI) techniques allow the assessment of changes in brain tissue composition. However, the development and pattern of disease-related cortical changes have not yet been demonstrated in PD with qMRI methods. The aim of this study was to investigate longitudinal cortical microstructural changes in PD with quantitative T1 relaxometry.
Methods: 13 patients with mild to moderate PD and 20 matched healthy subjects underwent high resolution T1 mapping at two time points with an interval of 6.4 years (healthy subjects: 6.5 years). Data from two healthy subjects had to be excluded due to MRI artifacts. Surface-based analysis of cortical T1 values was performed with the FreeSurfer toolbox.
Results: In PD patients, a widespread decrease of cortical T1 was detected during follow-up which affected large parts of the temporo-parietal and occipital cortices and also frontal areas. In contrast, age-related T1 decrease in the healthy control group was much less pronounced and only found in lateral frontal, parietal and temporal areas. Average cortical T1 values did not differ between the groups at baseline (p = 0.17), but were reduced in patients at follow-up (p = 0.0004). Annualized relative changes of cortical T1 were higher in patients vs. healthy subjects (patients: − 0.72 ± 0.64%/year; healthy subjects: − 0.17 ± 0.41%/year, p = 0.007).
Conclusions: In patients with PD, the development of widespread changes in cortical microstructure was observed as reflected by a reduction of cortical T1. The pattern of T1 decrease in PD patients exceeded the normal T1 decrease as found in physiological aging and showed considerable overlap with the pattern of cortical thinning demonstrated in previous PD studies. Therefore, cortical T1 might be a promising additional imaging marker for future longitudinal PD studies. The biological mechanisms underlying cortical T1 reductions remain to be further elucidated.
Multimodal quantitative mri reveals no evidence for tissue pathology in idiopathic cervical dystonia
(2019)
Background: While in symptomatic forms of dystonia cerebral pathology is by definition present, it is unclear so far whether disease is associated with microstructural cerebral changes in idiopathic dystonia. Previous quantitative MRI (qMRI) studies assessing cerebral tissue composition in idiopathic dystonia revealed conflicting results.
Objective: Using multimodal qMRI, the presented study aimed to investigate alterations in different cerebral microstructural compartments associated with idiopathic cervical dystonia in vivo.
Methods: Mapping of T1, T2, T∗2, and proton density (PD) was performed in 17 patients with idiopathic cervical dystonia and 29 matched healthy control subjects. Statistical comparisons of the parametric maps between groups were conducted for various regions of interest (ROI), including major basal ganglia nuclei, the thalamus, white matter, and the cerebellum, and voxel-wise for the whole brain.
Results: Neither whole brain voxel-wise statistics nor ROI-based analyses revealed significant group differences for any qMRI parameter under investigation.
Conclusions: The negative findings of this qMRI study argue against the presence of overt microstructural tissue change in patients with idiopathic cervical dystonia. The results seem to support a common view that idiopathic cervical dystonia might primarily resemble a functional network disease.
Quantitative MRI allows to probe tissue properties by measuring relaxation times and may thus detect subtle changes in tissue composition. In this work we analyzed different relaxation times (T1, T2, T2* and T2′) and histological features in 321 samples that were acquired from 25 patients with newly diagnosed IDH wild-type glioma. Quantitative relaxation times before intravenous application of gadolinium-based contrast agent (GBCA), T1 relaxation time after GBCA as well as the relative difference between T1 relaxation times pre-to-post GBCA (T1rel) were compared with histopathologic features such as the presence of tumor cells, cell and vessel density, endogenous markers for hypoxia and cell proliferation. Image-guided stereotactic biopsy allowed for the attribution of each tissue specimen to its corresponding position in the respective relaxation time map. Compared to normal tissue, T1 and T2 relaxation times and T1rel were prolonged in samples containing tumor cells. The presence of vascular proliferates was associated with higher T1rel values. Immunopositivity for lactate dehydrogenase A (LDHA) involved slightly longer T1 relaxation times. However, low T2′ values, suggesting high amounts of deoxyhemoglobin, were found in samples with elevated vessel densities, but not in samples with increased immunopositivity for LDHA. Taken together, some of our observations were consistent with previous findings but the correlation of quantitative MRI and histologic parameters did not confirm all our pathophysiology-based assumptions.
Background: Network science provides powerful access to essential organizational principles of the brain. The aim of this study was to investigate longitudinal evolution of gray matter networks in early relapsing–remitting MS (RRMS) compared with healthy controls (HCs) and contrast network dynamics with conventional atrophy measurements.
Methods: For our longitudinal study, we investigated structural cortical networks over 1 year derived from 3T MRI in 203 individuals (92 early RRMS patients with mean disease duration of 12.1 ± 14.5 months and 101 HCs). Brain networks were computed based on cortical thickness inter-regional correlations and fed into graph theoretical analysis. Network connectivity measures (modularity, clustering coefficient, local efficiency, and transitivity) were compared between patients and HCs, and between patients with and without disease activity. Moreover, we calculated longitudinal brain volume changes and cortical atrophy patterns.
Results: Our analyses revealed strengthening of local network properties shown by increased modularity, clustering coefficient, local efficiency, and transitivity over time. These network dynamics were not detectable in the cortex of HCs over the same period and occurred independently of patients’ disease activity. Most notably, the described network reorganization was evident beyond detectable atrophy as characterized by conventional morphometric methods.
Conclusion: In conclusion, our findings provide evidence for gray matter network reorganization subsequent to clinical disease manifestation in patients with early RRMS. An adaptive cortical response with increased local network characteristics favoring network segregation could play a primordial role for maintaining brain function in response to neuroinflammation.